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1 Introduction

In 2012, approximately 300,000 US firms chose to export to foreign markets. The decision

of these firms to sell abroad drives the volume of trade from the US—according to Bernard

et al. (2010), 70% of the cross-sectional variation in exports comes from firms entering or

exiting a market rather than changing the intensity of their export volume. Thus, to predict

export flows and economic output, policymakers must focus on firm-level entry decisions,

which depend on the costs firms incur when entering export markets.

A long literature in international trade seeks to measure the entry costs involved with

exporting to a new market and to quantify the likely effects from different export promotion

programs and from fluctuations in a nation’s currency.1 All empirical work faces one compli-

cation, however: the decision to export depends on a firm’s expectations of the revenue it will

earn upon entry into a foreign market. Without knowing precisely the contents of the firm’s

information set—how it views its own productivity and the future evolution of exchange rates,

trade policy, and political stability abroad—it is difficult to measure export entry costs and

predict how the firm will respond to changes in the economic environment.

The exporter’s problem is not unique. Many other discrete decisions require the firm or

the consumer to forecast a key independent variable. For example, when a firm develops a

new product, it must form expectations of the likely future demand (Bernard et al. (2010),

Bilbiie et al. (2012)). Similarly, to determine whether to invest in research and development

projects, the firm must form expectations about the success of the research activity (Aw

et al. (2011)). On the consumer side, Greenstone et al. (2014) examine the enlistment of

soldiers in the US Army; the decision to reenlist depends on expectations about the riskiness

of the task assigned. Similarly, a retiree’s decision to purchase a private annuity (Ameriks

et al. (2014)) depends on her expectations about life expectancy, and a consumer’s decision

to buy a durable good depends on the timing of future product updates (Gowrisankaran and

Rysman (2012)). In these settings, the econometrician rarely observes the agent’s forecast

and often cannot even collect the set of information the agent used in his forecast. Thus,

when estimating a structural model of discrete choice, the researcher typically substitutes a

proxy. The exact form of that proxy, and the assumptions the researcher imposes on agents’

expectations, affects the parameter estimates recovered from the discrete choice model. In the

context of the exporter’s decision, we illustrate that the estimates of the structural parameters

prove quite sensitive to these assumptions.

We start our analysis of the exporter’s problem with a standard partial equilibrium, two

period model of export participation. Following Melitz (2003), we specify a model that fea-

tures a demand function with constant elasticity of substitution, constant marginal cost, and

monopolistic competition between firms. The model provides us a proxy for the firm’s ex

1See for example Burstein et al. (2005).
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post revenue upon exporting to a particular market as a function of the firm’s domestic sales,

aggregate exports to the market, and the average domestic sales of those firms that chose to

export to the market. The decision to export depends on firms’ expectations about these ex

post revenues and on entry costs, which may depend on the distance to the export market.

We estimate these entry costs for 22 destination countries using the model and firm-level data

from the Chilean chemical sector. To do so, we depart from the existing empirical international

trade literature in that we do not require the researcher to have full or perfect knowledge of

the content of firms’ information sets at the time of their entry decisions.2 Instead, we develop

new types of moment inequalities that allow us to identify the value of export entry costs and

conduct counterfactuals with only partial knowledge of exporters’ information sets.

We have three main contributions. First, we show that estimates of export entry costs

and the model-based predictions of firms’ export decisions and export volumes are sensitive

to assumptions the researcher places on firms’ information sets. Specifically, maintaining the

assumption that firms’ expectations are rational and using maximum likelihood methods, we

compare two alternative assumptions on firms’ knowledge. First, we impose perfect foresight.

That is, we assume firms can predict perfectly the revenues they will earn ex post. In this

case, we find export costs from Chile to Argentina, the United States, and Japan to equal

$894,000, $1.7 million, and $2.8 million, respectively. These cost estimates appear large, given

that the mean firm-level export revenues to these countries across all years of the data equal

only $430,000, $2.31 million, and $1.95 million. Second, we follow the two-step procedure of

Willis and Rosen (1979), Manski (1991) and Ahn and Manski (1993) in which, in a first stage,

we specify the set of variables firms use to form their unobserved expectations. We assume

a firm’s unobserved information set includes distance to the export market, a measure of the

firm’s productivity in the prior year, and aggregate exports to the market in the prior year.

The export entry costs in this two-step approach are lower, but still generally above or close

to the mean revenues per firm: the costs of exporting to Argentina, the United States, and

Japan are $594,000, $1.2 million, and $1.9 million, respectively. That is, the average exporter

to Argentina and Japan is expected to earn negative or close to zero profits upon entry.

The two-step procedure, a common method for handling unobserved expectations, requires

the researcher to specify precisely the content of the agent’s information set. In the above

example, we choose three variables contained in the Chilean customs data. If firms actually

employ a different set of variables—either more information or less—these entry cost estimates

may differ from the true parameters. The direction of the bias that arises when wrongly

assuming that firms have perfect foresight or a specific but incorrect information set is difficult

to characterize generally. The tendency for attenuation in the coefficient that is measured with

error is similar to that seen in the linear model case, but in a probit model we can only provide

2See Roberts and Tybout (1997), Das et al. (2007), Arkolakis (2010), Cherkashin et al. (forthcoming),
Moxnes (2010), Eaton et al. (2011), Ruhl and Willis (2014), Arkolakis et al. (2014).
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an analytical form for the bias in special cases (see Yatchew and Griliches (1985)). We show

empirically in the export case a downward bias in the coefficient on revenue, which translates

into larger estimates of the entry cost parameters.

As a second main contribution of this paper, we overcome this potential for bias with

a new empirical approach. We employ two new types of moments inequalities, which we

label odds-based inequalities and generalized revealed preference inequalities.3 Intuitively,

we use the observed decisions of firms to export to a particular market as evidence that the

expected returns to exporting for those firms—in terms of gross expected profits less any fixed

entry costs—must exceed the expected returns from not serving that destination market.

However, Manski (2002) shows that preference parameters and unobserved expectations are

not separately identified from the distribution of choices alone. We must therefore make

further assumptions.

We compare the assumptions under our methodology with those common to methods used

in the empirical trade literature on export participation. In the literature related to unob-

served expectations, researchers typically employ ex-post realizations of the variables for which

the firm forms expectations, here export revenue, as a proxy for unobserved expectations. In

the solution Willis and Rosen (1979), Manski (1991) and Ahn and Manski (1993) propose,

for example, the researcher assumes agents are rational and forms expectations by projecting

the ex post realization on a set of variables the researcher observes. Using the inequalities we

develop, we also impose rationality on the firms. However, we allow the firm’s expectations to

depend on variables the researcher does not observe. The form of our inequalities, however,

restrict us to binary decision problems, a limitation relative to Willis and Rosen (1979). In

addition, in comparison to the existing empirical literature that defines inequalities from re-

vealed preference, notably Pakes (2010) and Pakes et al. (forthcoming), we allow idiosyncratic

structural errors, such as a probit error, to affect the firm’s binary choices.

In our data and using our inequalities, we find set-identified estimates of exporters’ entry

costs in the Chilean chemical sector. We compare our estimates of the costs of exporting

from Chile to Argentina, for example, to the maximum likelihood estimates reported above.

Depending on the researcher’s assumptions on the firms’ information sets, the entry costs

ranged from $594,000 to $894,000 under traditional methods. Using our approach, we find a

much lower range of entry costs, between approximately $270,000 and $298,000. Our estimates

of the fixed costs for Argentina lie far below the mean level of exports per firm; at the upper

bound, the fixed costs represent 69% of the mean level of exports. For the United States and

Japan our fixed costs estimates represent an even smaller fraction of the average exports per

firm, at most 54% for Japan and 27% for the United States.

3The generalized revealed preference inequalities extend the revealed preference inequalities introduced in
Pakes (2010). Pakes (2010) allows for structural errors in specific cases: (a) when such errors are common
across individual and/or choices (i.e. fixed effects); and (b) ordered choice models. The generalized revealed
preference inequalities allow for an individual and choice-specific structural error in binary choice models.
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In arriving at these fixed cost estimates, we assume that firms know the distance to the

export destination, the aggregate exports to that market in the prior year, and their own

domestic sales from the prior year, which we use in the model as a measure of the firm’s

productivity. Importantly, our model does not restrict firms to use only these variables, but

requires that the firm know at least these variables. We can use the specification test of

Andrews and Soares (2010) to test the null hypothesis that the moments we specify produce

a confidence set that contains the true value of the parameter vector. That is, we can test our

specification that presumes these variables are in the firm’s information set. In our estimation,

we cannot reject the null hypothesis that exporters know distance, lagged domestic sales, and

lagged aggregate exports when making their export decisions.

Finally, as a third main contribution, we provide measurement of firms’ response to two

counterfactual policies. To do so, we first show how to bound predictions of the exporter’s

behavior in counterfactual environments. We provide a novel—and very simple—procedure

for conducting counterfactual analyses using our inequalities. With this procedure to predict

firms’ export participation decisions, we examine how firms would respond to (1) a policy that

reduces entry costs by 40% and (2) a currency depreciation of 20%.

We first compare our counterfactual predictions under different assumptions on firms’

information sets. Relative to estimates from a model that assumes perfect foresight, the

estimates from the two-step procedure differ substantially. After a 40% reduction in entry costs

and assuming firms have perfect foresight, the predicted export revenue to Argentina, Japan,

and the United States equals $17.9 million, $40.3 million, and $74.4 million, respectively.

Under the two-step procedure, the predicted export volume is 3% and 11% lower for Argentina

and Japan and 21% higher for the United States. That is, we would predict the relative effect

of the policy on exports to Argentina and the United States to be different depending on

our specification of the information set. Comparing the estimates under perfect foresight

to the set identified by the moment inequalities, in the latter the predicted range of export

volumes to Argentina, Japan, and the United States are higher by 29-45%, 56-77% and 35-

45%, respectively.

We use our inequalities to examine the substantive effect of the reduction in entry costs,

possibly via a launch-aid subsidy, and the effect of a currency devaluation. Comparing trade

flows from Argentina to Chile in the baseline environment to the counterfactual change in entry

costs, the number of exporters increases between 14% and 21% and export volume increases

anywhere from 3% to 16%. Under a 20% currency depreciation, the predicted number of

exporters from Chile to Argentina increases between 2% and 12% and the volume of exports

increases between 37% and 49%.

We proceed in this paper by first describing our model of firm exports in Section 2, building

up to an expression for firms’ export participation decisions. In Sections 3 and 4, we describe

our empirical setting in more detail and outline the maximum likelihood procedures. In Section
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5, we introduce our moment inequality estimator, built to provide inference in settings in which

the researcher may not observe the same variables as the firm. We discuss how to build these

inequalities as well as conduct counterfactuals with possibly set-identified parameters. Section

6 contains the results from estimating models in which we must specify the firm’s information

set and results from our moment inequality approach. We compare the estimates from the

alternative approaches. In Section 7, we use our inequality model to predict the effect on

export participation and export volume from changes to the economic environment. Section

8 concludes.

2 Export Model

We begin with a model of a firm’s export behavior. All firms in our dataset are located in a

single country h but may sell in every country. We index the firms located in h and active at

period t by i = 1, . . . , Nt.
4 We index the potential destination countries by j = 1, . . . , J .

2.1 Demand

Every firm i faces an isoelastic demand in country j in year t

xijt =
p−ηijtYjt

P 1−η
jt

, (1)

where p is the price set by a firm in the destination country, Y is the total expenditure in

country j in the sector in which firm i operates, and P is the ideal price index:

Pjt =

[∫
i∈Ajt

p1−η
ijt di

] 1
1−η

,

where Ajt denotes the set of all firms in the world selling in j. We define pijt, Pjt and Yjt

in country j’s currency. This specification implies that every firm faces a constant demand

elasticity in country j equal to η. We assume that the parameter η is constant across countries

and time periods.

2.2 Supply

Firm i produces one unit of output with a cost-minimizing combination of inputs that cost

aitct, where c represents the cost of this bundle in country h’s currency and ait measures the

number of bundles of inputs that firm i uses to produce one unit of output. The cost c will be

affected by factor prices in h. The inverse of ait denotes firms i’s physical productivity level

4For ease of notation, we will eliminate the subindex for the country of origin h.
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in t. We assume that a cumulative distribution function Gt(a) describes the distribution of

a across firms located in h in year t. This distribution function may vary freely across time

periods. We also allow firms’ productivity to be correlated over time.

When i wants to sell in a destination market j 6= h, it must pay the production cost aitct

and two additional costs: a transport cost, τjt, and a fixed cost, fijt. We adopt the “iceberg”

specification of transport costs and assume that firm i must ship τjt units of a product from

country h for one unit to arrive to j. We assume that fixed export costs defined in terms of

country h currency are

fijt = β0 + β1distj + νijt, (2)

where distjt denotes the distance in kilometers from country h to country j (constant over

time), and νijt is an aggregate of all remaining determinants of fijt.
5

2.3 Profits conditional on exporting

We assume that every seller in market j behaves as a monopolistically competitive firm. The

demand and supply assumptions above imply that the optimal price firm i sets in j is

pijt =
η

η − 1

τjtaitct
ejt

, (3)

where ejt denotes the price in units of home currency of one unit of country j’s currency. As

a result, the total revenue that i will obtain in any country j in country h’s currency is:

rijt =

[
η

η − 1

τjtaitct
Pjt

]1−η
Yjte

η
jt (4)

and the export profit (gross of fixed costs) is η−1rijt.

2.4 Decision to export

Once we account for the fixed costs of exporting, the export profits that i will obtain in j are

πijt = η−1rijt − fijt. (5)

Firm i will decide to export to j if and only if E[πijt|Jijt, νijt] ≥ 0, where the vector (Jijt, νijt)
denotes firm i’s information about any variable affecting its potential profits from exporting

to j at period t, πijt, at the time it decides whether to export to j in year t. Let dijt =

5We assume that the fixed export costs fijt are independent of previous export experience of i in country
j. However, given the very flexible specification of the time process of the term ait, our model will be able to
match any observed persistence in export status.
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1{E[πijt|Jijt, νijt] ≥ 0}, where 1{·} denotes the indicator function. Assuming that distj ∈
Jijt, we can rewrite dijt as

dijt = 1{η−1
E[rijt|Jijt, νijt]− fijt ≥ 0}, (6)

where rijt is defined in equation (4), fij is defined in equation (2), and E[·] denotes the expec-

tation with respect to the data generating process. Therefore, defining agents’ expectational

error as εijt, εijt = rijt −E[rijt|Jijt, νijt], it holds that

E[εijt|Jijt, νijt] = 0. (7)

Given equations (2) and (6) and the assumption that

νijt|(rijt,Jijt) ∼ N(0, σ2
ν), (8)

we can write the probability that i exports to j conditional on Jijt as

Pijt = P(dijt = 1|Jijt) = Φ
(
σ−1
ν

(
η−1

E[rijt|Jijt]− β0 − β1distj
))
, (9)

where Pijt =
∫
ν 1{η

−1
E[rijt|Jijt] − β0 − β1distj − ν ≥ 0}φ(ν)dν, and φ(·) and Φ(·) are,

respectively, the standard normal probability density function and cumulative distribution

function.

2.5 Effect of change in export entry costs

We study the effect of a policy that, for the firms located in country h, reduces export entry

costs by 40%. We denote the counterfactual value of β0 as β1
0 = 0.6β0 and the counterfactual

value of β1 as β1
1 = .6β1. We assume that, for all firms and countries, τ , c, e, P , Y , and a

remain invariant to the change in (β0, β1). From equation (4), this implies that rijt is invariant

to the change in (β0, β1). Therefore, the only variables affected by the policy are the set of

export participation dummies, {dijt, i = 1, . . . , N} and, through them, the total exports from

h to j, Rjt. We denote with superscript 1 the value of these variables for the case in which

(β0, β1) = (β1
0 , β

1
1). Using g1

jt to denote the gross export growth due to the change in export

costs, we can write

g1
jt =

R1
jt

Rjt
=

∫
i∈Nt d

1
ijtrijtdi∫

i∈Nt dijtrijtdi
=

∫
i∈Nt P

1
ijtrijtdi∫

i∈Nt Pijtrijtdi
, (10)

where

P1
ijt = P1(dijt = 1|Jijt) = Φ

(
σ−1
ν

(
η−1

E[rijt|Jijt]− 0.6β0 − 0.6β1distj
))
. (11)
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2.6 Effect of currency depreciation

We also study the effect of a 20% currency devaluation in country h. Denoting with a super-

script 2 the value of the different variables after the counterfactual change in ej , e
2
j = 1.2ej .

We assume that, for all countries and firms, τ , c, P , Y , and a remain invariant to the change

in e. From equation (4), this implies that the currency devaluation changes export revenues

conditional on exporting such that r2
ijt = rijt(1.2)η. Using g2

jt to denote the gross export

growth due to the currency devaluation we can write

g2
jt =

R2
jt

Rjt
=

∫
i∈Nt d

2
ijtr

2
ijtdi∫

i∈Nt dijtrijtdi
=

∫
i∈Nt P

2
ijtrijt(1.2)ηdi∫

i∈Nt Pijtrijtdi
, (12)

where the third equality uses equation (4) and

P2
ijt = P1(dijt = 1|Jijt) = Φ

(
σ−1
ν

(
η−1

E[rijt|Jijt](1.2)η − β0 − β1distj
))
. (13)

2.7 Normalization

Given equations (9), (10), and (11), the effect of the counterfactual changes described in

Sections 2.5 and 2.6 is independent of the scale of the parameter vector (σν , η, β0, β1)—that

is, if we multiply these four parameters by the same positive constant, the probabilities Pijt,
P1
ijt, and P2

ijt and the changes in export revenues g1
jt and g2

jt remain the same. This implies

that we cannot use observed data on export participation to identify the scale parameter.

However, this scale parameter is irrelevant for the outcomes of our counterfactual exercises; if

we maintain a constant scale parameter, we can still compare the relative magnitudes of the

estimates of (σν , η, β0, β1) that we obtain through different estimation methods.

In order to normalize by scale the parameter vector in export entry models, researchers in

international trade typically calibrate η to a given constant. We follow that approach and fix

η−1 to a positive constant k and rewrite Pij , P1
ij , and P2

ij as a function of (σν , β0, β1)

Pijt = Φ
(
σ−1
ν

(
kE[rijt|Jijt]− β0 − β1distj

))
, (14)

P1
ijt = Φ

(
σ−1
ν

(
kE[rijt|Jijt]− 0.6β0 − 0.6β1distj

))
, (15)

P2
ijt = Φ

(
σ−1
ν

(
kE[rijt|Jijt](1.2)η − β0 − β1distj

))
. (16)

For simplicity of notation, from now on, we use θ to denote the parameter vector (σν , β0, β1).

Following standard estimates in the literature, we will set k = 0.2, which implies an elasticity

of substitution equal to η = 5.
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3 Empirical Setting

3.1 Data

Our data come from two separate sources. The first is an extract of the Chilean customs

database, which covers the universe of exports of Chilean firms from 1996 to 2005. The second

is the Chilean Annual Industrial Survey (Encuesta Nacional Industrial Anual, or ENIA), which

includes all manufacturing plants with at least 10 workers for the same years. We merge

these two data sets using firm identifiers, allowing us to exploit information on the export

destinations of each firm and on their domestic activity.6

These firms operate in the 19 different 2-digit ISIC sectors that deal with manufacturing.7

We restrict our analysis to one sector: the manufacture of chemicals and chemical products.

This is the second largest export manufacturing sector in Chile.8 In Table 1, we report

summary statistics on the number of exporters, the volume of exports, as well as the intensity

of exports per firm. We focus our analysis on countries which saw at least five firms exporting

to that destination in all years of our data. Across the time period used in our empirical

analysis, this restriction leaves 22 countries. We observe 266 unique firms manufacturing

products in the chemicals sector across all years; on average, 102 of these firms participate in

at least one export market in a given year. In Panel 1 of Table 1, we report the total annual

exports in this sector, which are on average $1.184 billion but fluctuate, with a low in 2001 of

$673 million. The mean level of exports per firm, across all export destinations, varies across

years as well, but is roughly $580,000 per firm and destination. We focus in Panel 2 of Table 1

on export revenues for three countries—Argentina, Japan, and the United States—across all

years of the data. We focus on these destinations in later counterfactual exercises. For these

three countries, the total volume of exports across all years of the data equals $368 million,

$1.489 billion, and $2.093 billion, respectively.9 The mean annual volume per exporter equals

$430,000, $1.95 million, and $2.31 million, respectively, for Argentina, Japan, and the United

States

Our data set includes both exporters and non-exporters. Furthermore, in order to minimize

the risk of selection bias in our estimates, we use an unbalanced panel that includes not only

6We aggregate the information from ENIA across plants in order to obtain firm-level information that
matches the customs data. There are some cases in which firms are identified as exporters in ENIA but do not
have any exports listed with customs. In these cases, we assume that the customs database is more accurate
and thus label these firms as non-exporters. We lose a number of small firms in the merging process because,
as indicated in the main text, ENIA only covers plants with more than 10 workers. Nevertheless, the remaining
firms account for around 80 percent of total export value.

7ENIA encompasses class D (sectors 15 to 36) of the ISIC rev.3.1 industrial classification. The Chilean
chemicals sector is sector 24.

8The largest export manufacturing sector is food and food products. The estimation of fixed costs for this
sector are in progress.

9In 2005, the export volume for Argentina, Japan, and the United States equals $42 million, $176 million,
and $150 million, respectively.
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those firms that appear in ENIA in every year between 1995 and 2005 but also those that were

created or disappeared during this period.10 Finally, we obtain information on the distance

from Chile to each destination market from CEPII.11

3.2 Proxy for export revenue

The first step common in the empirical literature on export participation is to define a proxy

for the revenue that every active firm i would obtain in any country j if it were to export in

t, rijt. In some datasets, these revenues are directly observed by the researcher but only in

the case of those firm-country-year combinations with positive exports. However, Appendix

A.1 shows that, given the assumptions in Sections 2.1 and 2.2, we can rewrite the potential

export revenue of i in j, rijt, as a function of variables that are typically observed in standard

trade datasets: (a) the domestic revenues of every active firm i, riht; (b) the aggregate export

flows from any home country h to any destination country j, Rjt; (c) the set of firms located

in h that actively export to j in t, {dijt, i = 1, . . . , Nt}. Specifically:

rijt =
Rjt∫

s∈N dsjt(rsht/riht)ds
. (17)

From equations (10), (12), (14), (15), and (16), we can predict the effect on aggregate exports

from country h to a given country j in t from the policy counterfactuals described in Sections

2.5 and 2.6. To do so, we need data on the measure of potential export revenues in equation

(17), the value of the parameter vector θ and the information sets Jijt that a potential exporter

i has about the export revenue it might earn if it decides to sell its product in country j in

year t.

Typical datasets in international trade contain data needed to construct the proxy for

export revenues in equation (17) for multiple home and destination countries. The information

sets exporters use to predict revenue, however, are rarely available to researchers. Therefore,

a key hurdle to overcome in order to perform the policy exercises described in Sections 2.5

and 2.6 is to estimate θ without observing all elements of Jijt.

3.3 Exporters’ Information Sets

In the model we describe in Section 2, potential exporters may be uncertain about the ex-post

revenues they would earn upon entering a market. We did not, however, impose assumptions

on the content of the information set, Jijt that firm i uses to predict its potential export

10From our sample, we exclude only firms that appear in ENIA less than three years or that appear during
two or more discontinuous periods between 1995 and 2005 (i.e. firms that first disappear and later reappear in
the sample).

11Available at http://www.cepii.fr/anglaisgraph/bdd/distances.htm. Mayer and Zignago (2006) provide a
detailed explanation of the content of this database.
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revenues. Here, we discuss several alternatives.

In the existing literature, to recover the unknown parameter vector, θ, researchers must

specify a vector of observed covariates, Zijt, that equal the information set, Jijt. Researchers

choose this set Zijt depending on the covariates in their theoretical model. In the model

we develop in Section 2, the variable that a potential exporter i needs to predict, rijt, is a

function of (1) the firm’s domestic sales, (2) aggregate exports to the destination country j

and (3) the domestic sales of all the firms that will end up exporting to j. Therefore, with this

model, the researcher would define an information set containing observed covariates capable

of predicting any of these three sets of variables.

In Section 4, we discuss two specific definitions of exporters’ information sets, Zijt. First,

we describe a model with perfect foresight. We denote this set with a superscript 1, Z1
ijt =

(rijt, distj). Under perfect foresight, potential exporters know, at the time of their entry

decision, the exact revenues they will obtain in each market if they choose to enter. In most

empirical settings, the set Z1
ijt is likely to be strictly larger than firms’ true information sets.

Second, we describe a setting in which exporters forecast their potential export revenues

using only information on their own lagged domestic sales, lagged aggregate exports to the

destination country j, and distance from the home country to j. We denote this information

set with a superscript 2, Z2
ijt = (riht−1, Rit−1, distj). This information set is likely to be strictly

smaller than the actual information set firms possess when deciding whether to export. Under

either definition of the information set, researchers typically assume these sets are common

across all firms. That is, all potential exporters base their entry decision on the same set of

covariates.

Ideally, we would like to estimate the parameter vector, θ, and perform counterfactuals

without imposing the strong assumptions above on firms’ information sets. In Section 5, we

propose a moment inequality estimator that allows both estimation and counterfactual simu-

lations in scenarios in which the econometrician observes only a subset of potential exporters’

true information sets. Specifically, we let the observables in the information set equal Z2
ijt, as

defined above, but allow other unobserved variables to be in the information set, such that

Z2
ijt is a subset of the true information set. Furthermore, unlike the approaches that must

specify the complete information set, this procedure permits the unobservable elements to

vary by firm, such that information sets need not be common to all exporters.

4 Perfect Knowledge of Exporters’ Information Sets

Under the assumption that the econometrician’s observed vector of covariates Zijt equals the

firm’s information set, E[rijt|Zijt] is a perfect proxy for E[rijt|Jijt] and one can identify θ as
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the value of the parameter γ that maximizes the log-likelihood function

L(γ|d, r, Z) =

E

[∑
t

∑
j

dijt log
(
P(djt = 1|rijt, Zijt)

)
+ (1− dijt) log

(
P(djt = 0|rijt, Zijt)

)]
, (18)

where the expectation is over individuals in the population, Zijt is the assumed information

set of firm i at the time it decides whether to export to j at t, and

P(djt = 1|rijt, Zijt) = Φ
(
γ−1

2

(
kE[rijt|Zijt]− γ0 − γ1distj

))
(19)

The vector γ = (γ0, γ1, γ2) denotes an unknown parameter vector whose true value is θ =

(β0, β1, σν).

Given that the researcher rarely observes firms’ information sets and that the sets them-

selves are likely heterogeneous across agents, specifying the correct information set of each

agent is notoriously complicated. If the information set specified by the researcher, Zijt, is

such that E[rijt|Jijt] 6= E[rijt|Zijt], then the identified value of θ under the assumption that

E[rijt|Jijt] = E[rijt|Zijt] will be biased. We denote the difference between the two revenue

projections as ξij : E[rijt|Jijt] = E[rijt|Zijt] − ξij . In this case, one can identify θ as the

parameter that maximizes the likelihood function in equation (18) but with

P(dijt = 1|rijt, Zijt) =∫
kξ+ν

1{kE[rijt|Zijt]− γ0 − γ1distj − (kξijt + νijt) ≥ 0}f((kξ + ν)|Zijt)d(kξ + ν), (20)

where f(kξ+ ν|Z) denotes the density of kξ+ ν conditional on Z. When comparing equation

(19) to the corresponding equation (20), it is clear that wrongly assuming that E[rijt|Jijt] =

E[rijt|Zijt] will generate biased estimates of θ unless f(kξ + ν|Zijt) is normal with mean zero

and variance σ2
ν . The direction of the bias for each element of θ depends on the shape of

the distribution of kξ + ν conditional on Zijt. Specifically, in the specific case in which ξ is

normally distributed and independent of both ν and Z, the presence of this additional error

term will simply biased upwards the estimate of the variance of the composite error term.

However, generally, ξ might be correlated with the term E[rijt|Zijt] and, in this case, the bias

on the different parameters θ might take many different forms.

In the specific case in which we assume perfect foresight (i.e. we assume that rijt =

E[rijt|Jijt]), we can analytically sign the bias on the estimates of β0 and β1. Applying the

results in Yatchew and Griliches (1985) to this context, we can conclude that: if firms’ true

expectations are normally distributed, E[rijt|Jijt] ∼ N(0, σ2
e), and the expectational error is

also normally distributed, ξij |(Jijt, νij) ∼ N(0, σ2
ξ ); then, there is an upward bias in the esti-
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mates of β0 and β1. Specifically, the ML estimates of these entry costs parameters converge

to β0(σ2
e + σ2

ξ )/σ
2
e and β1(σ2

e + σ2
ξ )/σ

2
e . Therefore, the upward bias increases in the variance

of the expectational error relative to the variance of the true unobserved expectations. When

either firms’ true expectations or the expectational error are not normally distributed, there is

no analytic expression for the bias term in β0 and β1. However, as the simulations presented

in Appendix A.2 show, assuming perfect foresight when firms’ expectations are actually im-

perfect generates an upward bias in β0 and β1 under many different distributions of firms’

true expectations and expectational error.

One may gain intuition for the upward bias in the ML estimates of β0 and β1 caused

by wrongly assuming perfect foresight from the well-known result on the downward bias of

estimates of covariates affected by classical measurement error in linear models (see page 73 in

Wooldridge (2002)). Rational expectations implies that firms’ expectational errors are mean

independent of their true expectation and, therefore, correlated with the ex-post realization

of export revenues. Consequently, in linear regression models, wrongly assuming perfect fore-

sight and using the ex-post realized revenue rijt as a regressor instead of the unobserved

expectation E[rijt|Jijt] will generate a downward bias on the coefficient on rijt. The probit

model in equation (19) differs from this linear setting in two dimensions. First, we perform

the due normalization by scale by setting the coefficient on the covariate measured with error,

E[rijt|Jijt], to k. This implies that the bias generated by the correlation between the expec-

tational error, εijt, and rijt will be reflected in an upward bias in the estimates of the entry

costs parameter β0 and β1. Second, the direction of the bias depends not only on the corre-

lation between εijt and rijt but also on the functional form of the distribution of unobserved

expectations and expectational error. However, as Appendix A.2 shows, for a wide range of

possible distributions, the positive bias in the estimates of the entry costs parameters β0 and

β1 persists.

Biased estimates of the structural parameter of interest θ will translate into incorrect

predictions of the effect of the counterfactual changes in the environment described in Sections

2.5 and 2.6. In Section 6, we illustrate the distinct estimates and counterfactual predictions

found when assuming alternately that Z1
ijt or Z2

ijt (as defined in Section 3.3) perfectly describe

the information set of potential exporters.

5 Partial Knowledge of Exporters’ Information Sets

Finding a set of observed covariates that exactly correspond to agents’ unknown information

sets is, in most empirical applications, difficult. Conversely, it is usually quite simple to define

a vector of observed covariates that is contained in such information sets. For example, in

each year, exporters will generally know their domestic sales as well as aggregate exports

from their home country to each destination market in the previous year. These variables are
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also usually observed in standard datasets and, therefore, they form a vector Zijt such that

Zijt ⊂ Jijt.
As Appendix A.3 shows, given the model described in Section 2 and available data on Zijt

and dijt, the assumption that Zijt ⊂ Jijt is not strong enough to point-identify the parameter

vector θ. However, this assumption has enough power to identify a set that contains the true

value of the parameter θ. Specifically, we present two new types of moment inequalities that,

under the assumption that Zijt ⊂ Jijt, will define such a set.

5.1 Odds-based moment inequalities

For any Zijt ⊂ Jijt, we define the conditional odds-based moment inequalities as

M(Zijt; γ) = E

[
ml(dijt, rijt, distj ; γ)

mu(dijt, rijt, distj ; γ)

∣∣∣∣∣Zijt
]
≥ 0, (21)

where the two moment functions are defined as

ml(·) = dijt
1− Φ

(
γ−1

2

(
krijt − γ0 − γ1distj

))
Φ
(
γ−1

2

(
krijt − γ0 − γ1distj

)) − (1− dijt), (22a)

mu(·) = (1− dijt)
Φ
(
γ−1

2

(
krijt − γ0 − γ1distj

))
1− Φ

(
γ−1

2

(
krijt − γ0 − γ1distj

)) − dijt. (22b)

We denote as Θ the set of all values of the parameter vector γ in the parameter space Γβ

that verify the inequalities defined in equations (21), (22a) and (22b). The following theorem

contains the main property of Θ.

Theorem 1 β ∈ Θ for any β ∈ Γβ.

The proof of the Theorem 1 is in Appendix A.4. Theorem 1 indicates that the odds-based

inequalities are consistent with the true value of the parameter vector.

Intuitively, the two moment functions in equations (22a) and (22b) are derived from the

score function of a likelihood function in which we replace the unknown expectation E[rijt|Jijt]
with the observed ex post revenue, rijt. The key difference between our moment inequality

approach and the maximum likelihood approach that assumes perfect foresight, described in

Section (4), is that here we include an error term that arises when the perfect foresight assump-

tion is inaccurate. This error term reflects the difference between the unobserved expectation

that enters in the firms’ entry rule, E[rijt|Jijt], and the observed ex post revenue, rijt. Given

the assumption that firms have rational expectations and that Zijt ⊂ Jijt, this expectational

error has a mean equal to zero conditional on the vector Zijt. We use this property of the

expectational error combined with the fact that both 1 − Φ(·)/Φ(·) and Φ(·)/(1 − Φ(·)) are
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globally convex to apply Jensen’s inequality and conclude that the inequality in equation (21)

should hold at the true value of the parameter vector.12 13

Even though both moment functions in equations (22a) and (22b) are derived from the

score function, they are not redundant. In order to gain intuition into the identifying power

of each of these moments, we can focus on identification of the parameter γ0. Given observed

values of dijt, rijt, Zijt, and of the parameters γ1 and γ2, the moment ml(·) in equation (22a)

is increasing in γ0 and, therefore, will identify a lower bound on γ0. The opposite is true for

the moment mu(·). Therefore, both moments are necessary to identify both upper and lower

bounds on γ0. The same intuition goes through for the parameters γ1 and γ2.

In the particular case in which agents’ expectations are perfect and the vector of instru-

ments Zijt happens to be identical to the agents’ information set, Jijt, the set Θ is a singleton

and identical to the true value of the parameter vector, θ. The size of the set Θ increases

monotonically in the variance of the expectational error—that is, in the difference between

firms expected revenues E[rijt|Jijt] and the ex post realization of such revenues rijt.

5.2 Generalized revealed-preference moment inequalities

For any Zijt ⊂ Jijt, we define the conditional revealed preference moment inequality as

Mr(Zijt; γ) = E

[
mr
l (dijt, rijt, distj ; γ)

mr
u(dijt, rijt, distj ; γ)

∣∣∣∣∣Zijt
]
≥ 0, (23)

where the two moment functions are defined as

mr
l (·) = −(1− dijt)

(
krijt − γ0 − γ1distj

)
+ dijtγ2

φ
(
γ−1

2 (krijt − γ0 − γ1distj)
)

Φ
(
γ−1

2 (krijt − γ0 − γ1distj)
) , (24a)

mr
u(·) = dijt

(
krijt − γ0 − γ1distj

)
+ (1− dijt)γ2

φ
(
γ−1

2 (krijt − γ0 − γ1distj)
)

1− Φ
(
γ−1

2 (krijt − γ0 − γ1distj)
) . (24b)

We denote as Θr the set of all values of the parameter vector γ in the parameter space Γβ

that verify the inequalities defined in equations (23), (24a) and (24b). The following theorem

contains the main property of Θr.

Theorem 2 β ∈ Θr for any β ∈ Γβ.

12Put differently, under the perfect foresight assumption, one identifies the true parameter vector using
moment functions (22a) and (22b), where the corresponding moments hold as equalities instead of the inequality
introduced in equation (21).

13The assumption of normality of the structural error term is sufficient but not necessary for the existence
of odds-based inequalities that correctly bound the true parameter vector. As long as the distribution of the
structural error ν is log-concave, inequalities analogous to those in equation (22), with the correct cumulative
distribution function Fν(·) instead of the normal cumulative distribution function Φ(·), will also satisfy Theorem
(1). The intuition for this result is that, for any log-concave distribution, both Fν(·)/(1 − Fν(·)) and (1 −
Fν(·))/Fν(·) are globally convex.
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The proof of the Theorem 2 is in the Appendix A.5. Theorem 2 indicates that the generalized

revealed-preference inequalities are consistent with the true value of the parameter vector.14

In general, both sets Θ and Θr will also contain values of γ other than its true value, β.

However, as we show in Section 6, in our empirical application, the interaction of both sets

Θ and Θr is small enough so that economically meaningful conclusions may be drawn from

combining the odds-based and generalized revealed-preference inequalities.

Intuitively, the two moment functions in equations (24a) and (24b) are derived from stan-

dard revealed preference arguments. We focus our discussion on moment function (24b); the

intuition behind the formation of moment (24a) is analogous. If firm i decides to export to j

in period t, so that dijt = 1, then by revealed preference, the firm must expect to earn positive

returns: dijt
(
kE[rijt|Jijt]− γ0− γ1distj − νijt

)
≥ 0. Substituting E[rijt|Jijt] = rijt− εijt, and

taking an expectation of this inequality conditional on (dijt,Jijt), we obtain the inequality,

dijt
(
krijt − γ0 − γ1distj

)
+ S(Jijt) ≥ 0, (25)

where S(Jijt) = E[−dijtνijt|dijt,Jijt]. The term krijt − γ0 − γ1distj accounts for factors that

are observed to the econometrician and that determine the export choice of firm i in country

j at t. The term S(·) is a selection correction term and accounts for the fact that firms

might decide whether to export based on determinants of profits that are not observed to the

researcher; i.e. the term νijt in the model described in Section 2.15

We label the moment functions in equations (24a) and (24b) as generalized revealed pref-

erence inequalities. These moments start with the baseline revealed preference inequalities

introduced in Pakes (2010) and Pakes et al. (forthcoming), and add an allowance for a struc-

tural error νijt with a non-zero variance–that is, we allow S(Jijt) to be different from zero.

Given that S(Jijt) ≥ 0 whenever there is an individual-specific structural error, revealed-

preference inequalities that ignore this term will always define a weakly smaller set than the

generalized revealed-preference inequalities in equations (23), (24a) and (24b).

14The assumption of normality of the structural error term is sufficient but not necessary for the existence
of generalized revealed-preference inequalities that correctly bound the true parameter vector. As long as the
distribution of the structural error ν is such that both fν(·)/Fν(·) and fν(·)/(1 − Fν(·)) are globally convex,
we may write inequalities analogous to those in equation (24) that also satisfy Theorem 2. Besides the normal
distribution, the type I extreme value distribution also satisfies this property.

15Appendix A.5 shows that, under the assumptions in Section 2,

S(Jijt) = (1− dijt)γ2

φ
(
γ−1

2 (kE[rijt|Jijt]− γ0 − γ1distj)
)

1− Φ
(
γ−1

2 (kE[rijt|Jijt]− γ0 − γ1distj)
)

We cannot directly use the term S(·) in our inequalities because they depend on the unobserved agents’
expectations, E[rijt|Jijt]. However, the inequality in equation 2 becomes weaker if we substitute the proxy for
ex-post profits, rijt, in S(Jijt) in place of the unobserved term, E[rijt|Jijt]. The reason is that the expectational
error has a mean equal to zero conditional on the vector Zijt. We use this property of the expectational error
combined with the fact that both φ(·)/Φ(·) and φ(·)/(1−Φ(·)) are globally convex to apply Jensen’s inequality.

16



As indicated in Section 5.1, the set defined by the odds-based inequalities contains only

the true value of the parameter vector whenever firms’ expectations are perfect and the vector

of instruments Zijt is identical to firms’ information sets. Therefore, in this very specific case,

the generalized revealed preference inequalities do not have any additional identification power

beyond that of the odds-based inequalities. In all other settings, these additional moments

can provide identifying power.16

5.3 General applicability of our moment inequalities

Both the odds-based and the generalized revealed-preference moment inequalities defined in

equations (21) and (23) identify the true value of the parameter vector in any binary choice

model that has the following properties:

1. The dummy variable d capturing the choice is determined following the equation d =

1{βX∗ + ν ≥ 0}, where the econometrician observes d but does not observe either X∗

or ν;

2. The econometrician observes a variable X such that X = X∗ + ε, and E[ε|X∗, Z] = 0;

3. The term ν is independent of both the unobserved term X∗ as well an instrument vector

Z that is observed by the econometrician;

4. The marginal distribution of ν is log-concave.

The economic model described in Section 2 is analogous to this statistical model. In the no-

tation of this model, X∗ represents firms’ unobserved expectations, X∗ = E[r|J ]; X captures

the ex-post observed realization of revenue, X = r; ε equals firms’ expectational error; ν

captures the unobserved component of the export entry costs; and Z being a subset of firms’

information sets. Even though the model in Section 2 assumes that ν is normally distributed,

the inequalities in Sections 5.1 and 5.2 apply more broadly; the only distributional requirement

on ν is that it should be log-concave.17

As far as we know, this statistical model has not been studied in the literature. Specifically,

the previous literature has imposed alternative restrictions on the relationship between the

unobserved covariate X∗ and its instrument vector Z. For example, Willis and Rosen (1979),

16How Θ compares to Θr is difficult to characterize generally. We show in simulations—available upon
request—that there are cases in which the revealed preference inequalities have additional identification power
beyond that of the odds-based inequalities.

17A random variable y has a log concave distribution if its density function fy satisfies that fy(λy1+(1−λ)y2)
≥ [fy(y1)]λ [fy(y2)]1−λ, 0 ≤ λ ≤ 1, for any given values y1 and y2 in the support of y. Some general references
on log concave density functions are Pratt (1981), Heckman and Honoré (1990), and Bagnoli and Bergstrom
(2005). Heckman and Honoré (1990) clarify that the class of log concave densities includes the normal, logistic,
uniform, exponential, extreme value and laplace (or double exponential) densities. Under some parameter
restrictions, it also includes the power function, Weibull, gamma, chi-squared and beta distributions.
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Manski (1991) and Ahn and Manski (1993) assume that the unobserved variable X∗ may be

written as a deterministic function of the observed instrument vector Z; i.e. X∗ = m(Z),

where m(·) may be unknown. In the setting of the model described in Section 2, this implies

that the researcher fully observes the information set of firms, J , which is equal to the vector

Z. The estimation procedure in Schennach (2007) imposes a slightly weaker restriction on the

relationship between X∗ and Z. Specifically, she imposes that X∗ = m(Z)+W , where W is a

covariate the researcher does not observe that is independent of the observed covariate Z and

whose expectation is zero— i.e. W ⊥ Z, E(W ) = 0. In the context of our economic model,

this assumption implies that all the variables in agents’ informations sets that the researcher

does not observe must verify two conditions: (a) enter additively in agents’ expectations; and,

(b) be independent of any observed variables in agents’ information sets. We discuss three

other related methods to identify the parameters of binary choice models with endogenous

regressors in Appendix A.8.

5.4 Deriving unconditional moments

The moment inequalities described in equations (21) and (23) condition on particular values of

the instrument vector, Z. In empirical applications in which at least one of the variables in the

vector Z is continuous, the sample analogue of these moment inequalities will likely involve an

average over very few observations (if any). Therefore, for estimation, it will be more useful to

work with unconditional moment inequalities. Each of the unconditional moment inequalities

is defined by an instrument function. Specifically, given an instrument vector g(·), we derive

unconditional moments that are consistent with our conditional moments:

E




ml(dijt, rijt, distj ; γ)

mu(dijt, rijt, distj ; γ)

mr
l (dijt, rijt, distj ; γ)

mr
u(dijt, rijt, distj ; γ)

× g(Zijt)

 ≥ 0,

where ml(·), mu(·), mr
l (·), and mr

u(·) are defined in equations (22) and (24). The unconditional

moment inequalities proposed here generate a larger identified set than that defined by the

conditional moments described in Section 5.1 and 5.2. The main advantage of the moments

proposed here is computational simplicity. Papers that define unconditional moments that

imply no loss of information with respect to their conditional counterpart are Armstrong

(2014) and Andrews and Shi (2013). The instrument functions suggested in these papers are

computationally expensive in our setting. Instead, in Section 6, we present results based on a
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set of instrument functions g(Zijt) = (g0(Zijt), g0.5(Zijt), g1(Zijt), g1.5(Zijt)) with

ga(Zijt) =

{
1{Zijt > med(Zijt)}
1{Zijt ≤ med(Zijt)}

}
× (|Zijt −med(Zijt)|)a,

and Zijt = (riht−1, Rjt−1, distj). Therefore, for any given value of a,

ga(Zijt) =



1{riht−1 > med(riht−1)} × (|riht−1 −med(riht−1)|)a,
1{riht−1 ≤ med(riht−1)} × (|riht−1 −med(riht−1)|)a,
1{Rjt−1 > med(Rjt−1)} × (|Rjt−1 −med(Rjt−1)|)a,
1{Rjt−1 ≤ med(Rjt−1)} × (|Rjt−1 −med(Rjt−1)|)a,
1{distj > med(distj)} × (|distj −med(distj)|)a,
1{distj ≤ med(distj)} × (|distj −med(distj)|)a.

Given that each particular instrument function ga(Zijt) contains six instruments and there

are four basic odds-based and generalized revealed preference inequalities (in equations (22)

and (24)), the total number of instruments used in the estimation is equal to twenty-four

times the number of different values of a that are combined to form the instrument vector

g(Zijt), in addition to a constant vector. In the benchmark case we simultaneously use two

different instrument functions, ga(Zijt), for a = 0, 1.5, to define both an estimated set Θall

and a confidence set Θα
all at significance level α. In Section 6.2, we show results for different

vectors of instruments functions g(Zijt) that combine the functions ga(Zijt) for different sets

of values of a.

5.5 Deriving bounds on choice probabilities

As Sections 5.1, 5.2 and 5.4 show, we can set identify and estimate the structural parameter

vector, θ, without the need to fully specify and observe agents’ information sets. However,

beyond obtaining estimates of export entry costs, a main motivation of estimating the export

entry model of Section 2 is to make predictions about how changes to the economic environ-

ment will affect export participation and, through it, export volumes. In this section, we show

that one can use the same data and assumptions imposed in the estimation routine to define

bounds on a firm’s probability of exporting.

Choice probabilities are not point identified in our setting for two reasons. First, even

if we were to know the true value of the parameter vector, θ, the fact that we only observe

a subset Zijt of the true information set, Jijt, implies that we cannot compute the export

probabilities in equation (14). Second, we do not recover the true value of the parameter

vector in our estimation, but only a set that includes it. As detailed in Appendix A.6, under

these circumstances we may still derive bounds on the expected probability conditional on

Zijt that a firm i exports to country j at period t.
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Suppose that the true value of the parameter vector, θ, is known. Then Theorem 3 defines

bounds on the expectation of the export probability Pijt (see equation (14) for its definition)

conditional on a vector Zijt such that Zijt ∈ Jijt.

Theorem 3 Suppose Zijt ∈ Jijt and define P(Zijt) = E[Pijt|Zijt], with Pijt defined in equa-

tion (14). Then,

1

1 +B2(Zijt; θ)
≤ P(Zijt) ≤

B1(Zijt; θ)

1 +B1(Zijt; θ)
, (26)

where

B1(Zijt; θ) = E

[
Φ
(
σ−1
ν

(
krijt − β0 − β1distj

))
1− Φ

(
σ−1
ν

(
krijt − β0 − β1distj

))∣∣∣∣Zijt], (27)

B2(Zijt; θ) = E

[
1− Φ

(
σ−1
ν

(
krijt − β0 − β1distj

))
Φ
(
σ−1
ν

(
krijt − β0 − β1distj

)) ∣∣∣∣Zijt]. (28)

The proof of the Theorem 3 is in the Appendix A.6. Note that we can use information on

the realized export revenues rijt, distance distj and the instrument vector Zijt to compute

consistent estimates of B1(Zijt; θ) and B2(Zijt; θ) at any particular value of Zijt = z,

B̂1(z; θ) =
∑
ijt

[
Φ
(
σ−1
ν

(
krijt − β0 − β1distj

))
1− Φ

(
σ−1
ν

(
krijt − β0 − β1distj

))] 1{Zijt = z}∑
ijt 1{Zijt = z}

, (29)

B̂2(z; θ) =
∑
ijt

[
1− Φ

(
σ−1
ν

(
krijt − β0 − β1distj

))
Φ
(
σ−1
ν

(
krijt − β0 − β1distj

)) ]
1{Zijt = z}∑
ijt 1{Zijt = z}

, (30)

where, for simplicity in the notation, we use
∑

ijt to denote
∑

i

∑
j

∑
t. Using the estimators

(29) and (30) and plugging them into equation (26) we define bounds on the average export

probability across those firms i countries j and time periods t such that their instrument

vector Zijt is equal to z. Specifically, by appropriately

The bounds in equation (26) depend on the true value of the parameter vector, θ, and,

therefore, cannot be computed. However, we may use the information on the points included

in either the identified set Θall or the confidence set Θα
all to build an identified set or confidence

set, respectively, for P(Zijt) that does not depend on the true value of the parameter vector

θ.

Corollary 1 Suppose Zijt ∈ Jijt and define P(Zijt) = E[Pijt|Zijt], with Pijt defined in equa-

tion (9). Then,

P(Zijt) ≤ P(Zijt) ≤ P(Zijt), (31)
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where

P(Zijt) = min
γ∈Θall

1

1 +B2(Zijt; γ)
, (32)

P(Zijt) = max
γ∈Θall

B1(Zijt; γ)

1 +B1(Zijt; γ)
. (33)

and B1(Zijt; γ) and B2(Zijt; γ) are defined in equations (27) and (28), respectively.

The proof of Corollary 1 is immediate from Theorem 3. We can define consistent estimates of

P(Zijt) and P(Zijt) simply by substituting B1(Zijt; γ) and B2(Zijt; γ) in these equations by

their consistent estimators B̂1(Zijt; γ) and B̂2(Zijt; γ), as defined in equations (29) and (30),

respectively.

Equation (31) defines bounds on export probabilities conditional on a particular value

of the instrument vector Zijt. However, using equation (31) we may define bounds on the

expected export probability for any subset of firms defined by a particular set Z of values of

the instrument vector Zijt as∑
ijt

P(Zijt)1{Zijt ∈ Z} ≤
∑
ijt

P(Zijt)1{Zijt ∈ Z} ≤
∑
ijt

P(Zijt)1{Zijt ∈ Z}. (34)

For example, if we define the Z to be a dummy variable selecting a particular country j∗

and year t∗, Z = 1{j = j∗, t = t∗} equation (34) will yield bounds on the average export

probability to country j∗ in year t∗. In Section 6.1, we use the bounds in equation (34) to

test the fit of the model for different countries and years. We show in Appendix A.7 how to

use equation (34) to compute bounds for the counterfactual scenarios described in Sections

2.5 and 2.6.

6 Results

We estimate the parameters of the exporters’ participation decisions using three different

approaches discussed above. First, we use maximum likelihood to estimate the components

of the exporter’s costs of entering a new market under perfect foresight—we assume the firm

perfectly predicts the level of revenue it will earn upon entry. Second, the again use maximum

likelihood methods, but under the two-step procedure in which we use the realized revenue as

a proxy in a first stage. In this approach, we specify the agent’s information set in the first

stage to include the total aggregate exports in the prior year, the distance to the destination

country, and the firm’s own domestic sales from the previous year. Finally, third, we carry out

our inequality estimation. For comparison purposes, we assume, as in the two-step approach,

that the firm knows lagged aggregate exports, its own lagged domestic revenue, and the
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distance to the export destination. However, unlike the two-step approach, the inequalities

allow additional unobserved variables to influence the decision to export.

We first discuss the parameter estimates and illustrate the fit of the models in comparison

to the data. We then compare the estimates of the costs of entry under each of the three

alternative methods.

6.1 Predictions and fit

In Table 2, we report the estimates and the confidence regions for the parameters of our entry

cost specification. The first coefficient, σ, represents the variance of the probit structural error

in the model of the export participation under the normalization discussed in Section 2.7. The

remaining coefficients represent a constant component and the contribution of distance to the

level of the costs of entry under this normalization. From the raw coefficients, it is clear that

both the model involving perfect foresight and the two-step approach of Willis and Rosen

(1979), Manski (1991) and Ahn and Manski (1993) produce much larger estimates of the costs

to participate in an export market than does our moment inequality approach. For example,

looking at the set identified parameter on the distance variable from the moment inequalities,

the identified set ranges from $428,000 to $479,000 added cost when the export destination

is 10,000 kilometers farther in distance. Under the two maximum likelihood procedures,

the estimates of the distance coefficient equals $1,180,000 and $812,000 for the same added

distance.

We translate these coefficients into an estimate of the entry costs of exporting and report

the results in Table 4. For clarity of exposition, we focus on three countries out of the 22

destinations to which Chilean firms export chemical products: Argentina, Japan, and the

United States. These three countries offer prototypical examples of how export volume and

export participation differs by location and market size. Under perfect foresight, we estimate

the entry costs in these three countries to equal $894,000, $2.80 million, and $1.74 million,

respectively. Recall from Table 1, the mean volume of exports per firm in Argentina, Japan,

and the United States are only $430,000, $1.95 million, and $2.3 million. Comparing the

estimates under perfect foresight to the estimates from the two-step procedure, the two-step

procedure produces entry cost estimates that about 1/3 smaller.

Under our moment inequality estimator, we find estimates of the entry costs from exporting

of between $270,000 and $298,000 for Argentina, $977,000 and $1.06 million for Japan, and

between $592,000 and $632,000 for the United States. Across Argentina, Japan, and the

United States, the estimated bounds we find from the inequalities equal only a fraction of

the perfect foresight estimates, with a level between 30% and 38% of the perfect foresight

values. Comparing the bounds of the entry costs from the inequalities to the estimates from

the two-step approach, again the bounds are much smaller; the estimates of the entry costs
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from the inequality approach equal about half those estimated under the two-step approach.

The results appear in line with the discussion in Section 4 of the bias that may arise if

the researcher incorrectly specifies the firm’s information set. Here, specifying a specific and

limited information set appears to drive an upward bias in the estimates of the entry costs,

as it pushes downward the estimated coefficient on the mismeasured revenue variable. We see

this effect most strongly when comparing the estimates from our moment inequalities to the

estimates of entry costs from a model in which firms have perfect foresight or forecast revenue

using a specific set of covariates. This result is not guaranteed analytically; the same tendency

that produces attenuation bias in a linear model with measurement error still exists, but the

nonlinear errors in the probit model can produce a force in the opposite direction.

Furthermore, comparing the estimates from the three methods to the summary statistics

on export revenue per firm provides additional support for the direction of the bias under the

assumption that the firm observes the full information set. For Argentina, Japan, and the

United States, the estimated entry costs from perfect foresight lie well above the median level

of per-firm exports. Specifically, at the estimated level of entry costs, roughly 89%, 75%, and

71% of exporters to Argentina, Japan, and the United States have annual export revenues

below the entry costs, meaning these firms would lose money on entry. The two-step procedure

finds lower levels of the entry costs. Nonetheless, anywhere from 63% to 81% of exporters

would lose money from participating in export markets given this level of costs. Using our

inequality model, we estimate entry costs closer to the median per-firm revenue in Argentina

Japan, and the United States. In all countries, the entry costs from the inequality approach

fall below the country and year-specific averages level of exports per firm.

Finally, in Table 6, we report the observed level of export participation in our three com-

parison countries in the year 2005. Along with these observed values, we report the predictions

from the export model under perfect foresight, the two-step approach, and from our inequal-

ities. In part due to their high estimated levels of entry costs and their high coefficient on

distance, both the perfect foresight model and the two-step approach underestimate the num-

ber of entrants per country in 2005. Interestingly, the predictions from these two approaches

differ by country. For the United States, the two-step approach predicts a larger number of

exporters than does the model that assume perfect foresight. For Japan and Argentina, the

perfect foresight model predicts greater entry than does the two-step approach. Comparing

these estimates to those from the inequality approach, it is clear that estimates of export

participation based on perfect knowledge of the information set differ importantly from the

observed level of participation. In contrast, the inequality model’s predictions contain the

observed numbers of exporters in the estimated identified set.
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6.2 Robustness of inequality method

As discussed in Section 5.4, translating the conditional moment restrictions in the inequality

approach to unconditional moments offers a range of valid specifications of the set of instru-

ments. We illustrate the robustness of our inequality approach to various functional form

assumptions on the set of instruments.

In Table 3 we report confidence sets for several alternative specifications of the functional

form for the instruments in the moment inequality model. Here, we use a consistent set of

instrumental variables, as in the main specification. Specifically, at the time the firms decides

whether to enter a particular destination country in a given year, we assume the firm knows

the aggregate exports to that country in the prior year, the distance to the country, and the

firm’s own domestic revenue in the prior year, which functions as proxy for its productivity

relative to other exporters. With this set of variables, we compare alternative forms for

the instrument functions. Specifically, we use the form in Section 5.4, but add moments in

successive specifications that are weighted by the value of the instruments raised to different

powers. We report the end points of the confidence set over the parameters from these

specifications in Table 3 and illustrate the confidence sets in two dimensions in Figure 1.

The size of the confidence set varies across specifications, generally growing smaller with

additional weighted moments, as illustrated in the figure. For each alternative instrument

function, we carry out the specification test suggested by Andrews and Soares (2010). The

p-values reported in the final column of Table 3 illustrate that at conventional significance

levels, we fail to reject the null hypothesis that the confidence sets produced under our sets of

moment inequalities contain the true value of the parameter. We also report the fixed costs

estimates under different specifications. In Table 5, again the confidence sets grow smaller

with larger numbers of weighted moments included in the specification.18

7 Counterfactuals

As introduced in Section 2.5 and Section 2.6, we conduct two distinct counterfactual analyses

using the estimates from our alternative methodologies. In the first counterfactual, we simulate

the effect of lowering the export entry costs by 40%. There are multiple mechanisms—some

legal, some illegal—that policymakers might use to lower export entry costs, including launch-

aid subsidies. In the second counterfactual, we simulate the effect of a 20% depreciation of

18In addition, we run additional moment inequality specifications in which we vary both the set of instrument
functions and the set of variables assumed to be in the information set of the firm when deciding whether to
enter. We conduct a specification test of an inequality model in which we assume the firm also knows the
average productivity of other exporters to a country in the prior period. This is a new variable added to the
set of three instruments included in our main specification. With p-value of .97, the specification test rejects
the model that includes the average productivity of other exporters to a country as an element of the firms’
information set.
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the Chilean peso relative to foreign currency. We conduct the counterfactuals using only data

from the year 2005.

The predictions of the counterfactual in which we lower export costs by 40% appear in

Table 7. In Table 8, we transform the estimates to illustrate the comparison across the method-

ologies. Relative to the predictions from perfect foresight, the predicted export participation

and volume under the two-step approach are lower for Argentina and Japan, but higher for the

United States. That is, even when comparing the two maximum likelihood approaches, the

predictions for how a policy will impact exports differs between the two methods depending

on the export destination. The moment inequality approach produces larger predictions of

the effect of the policy relative to either maximum likelihood approach.

We report the predictions from the second counterfactual—in which we simulate a currency

depreciation of 20%—in Table 9. Again, the moment inequality estimator generally predicts

larger effects on export participation and export volume from the policy.

We compare the baseline level of exports to the counterfactual predictions in Table 10.

To quantify the impact of the policy interventions, we use only the main inequality specifi-

cation. The estimates reveal substantive economic effects from the two policy interventions.

Decreasing export costs by 40% leads to a large increase in export participation in all three

countries, particular in markets far from Chile. As a percentage of the baseline level, the pol-

icy which causes entry costs to fall 40% leads to between a 14% and 21% increase in exports

to Argentina. The percentage increases in Japan and the United States are larger, between

38% and 69% and between 27% and 43%, respectively. Export volume also increases, but not

by quite as much, as the new exporters are likely smaller firms on average.

The counterfactual in which the Chilean currency falls by 20% produces a significant

increase in export participation relative to the baseline, though the effects are strongest in

Japan. Compared to the predictions when entry costs fall, the currency change produces a

relatively stronger effect on exports, as it affects the dollar returns of all exporters, even those

not on the margin of participation. For all three countries, the predicted volume of exports

in dollars is predicted to increase by between 37% and as much as 72% in the case of Japan.

8 Conclusion

We develop a new inequality estimator to recover the parameters of a firm’s export decision

when the firm must form expectations over the revenue it will earn upon entry. Many discrete

choice settings in economics fit this mold, in which the researcher does not observe the firm’s

expectations but has a proxy, often the ex post realization of those expectations.

The prior empirical literature generally followed one of two approaches in the case in which

researchers do not observe the firm’s expectation: either assume the firm has perfect foresight

or assume the econometrician observes the exact set of variables the firm used to form its
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expectation. We show that, in the context of export participation decisions, both methods

lead to large estimates of the entry costs involved with exporting. The entry costs found

exceed the mean revenues of the observed exporters. In contrast, our inequality approach

allows the firm’s expectations to be based on variables the econometrician does not observe.

The estimates of entry costs from the inequalities are between one third and one half the size

of the costs found using the approaches common in the international trade literature. The

predictions of two counterfactual economic environments—in which export entry costs fall 40%

and the local currency depreciates 20%—differ substantially across alternative methods. Even

when comparing the two prior approaches, the predictions of how exports to each destination

country change after a fall in entry costs differs in direction depending on the assumptions

the researcher places on the firm’s unobserved expectations.

On methodology, our novel inequalities approach improves on the existing empirical liter-

ature in three ways. First, we provide bounds on the parameters of interest that are robust

to alternative assumptions on the information set the firm used to form its expectations over

future variables. Second, at least for binary decisions, we relax a restriction common to past

empirical papers that use inequality estimators—namely, that there is no individual level

structural error that differs across firms, markets, and time periods. Finally, we show how to

use our inequalities to carry out counterfactual analyses. Jointly, these contributions provide

applied economists a robust tool for estimating structural models of discrete choice when the

decision maker’s information set is unknown.
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Table 1: Summary statistics on export participation and volume, years 1996-2005

Mean
Std(

Deviation Median
95th(

percentile Max
1996 92 1,190.14((((((( 0.52(((((((((((((( 1.41(((((((((((((( 0.11(((((((((((((( 2.15(((((((((((((( 13.96((((((((((((
1997 107 1,359.71((((((( 0.57(((((((((((((( 1.86(((((((((((((( 0.11(((((((((((((( 2.72(((((((((((((( 31.02((((((((((((
1998 105 1,556.54((((((( 0.54(((((((((((((( 1.36(((((((((((((( 0.13(((((((((((((( 2.48(((((((((((((( 14.60((((((((((((
1999 101 1,218.27((((((( 0.51(((((((((((((( 1.40(((((((((((((( 0.12(((((((((((((( 2.21(((((((((((((( 20.95((((((((((((
2000 109 919.85(((((((((( 0.49(((((((((((((( 1.10(((((((((((((( 0.14(((((((((((((( 2.39(((((((((((((( 10.30(((((((((((( 0.58%%%%%%%%%%%%%%%
2001 105 673.89(((((((((( 0.47(((((((((((((( 1.11(((((((((((((( 0.12(((((((((((((( 1.83(((((((((((((( 8.94((((((((((((((
2002 102 1,488.95((((((( 0.61(((((((((((((( 1.58(((((((((((((( 0.16(((((((((((((( 2.62(((((((((((((( 16.21((((((((((((
2003 106 1,071.21((((((( 0.61(((((((((((((( 1.51(((((((((((((( 0.17(((((((((((((( 2.48(((((((((((((( 21.34((((((((((((
2004 106 1,144.68((((((( 0.70(((((((((((((( 1.52(((((((((((((( 0.23(((((((((((((( 2.73(((((((((((((( 17.77((((((((((((
2005 94 1,220.10((((((( 0.78(((((((((((((( 1.73(((((((((((((( 0.20(((((((((((((( 3.61(((((((((((((( 16.00((((((((((((

Mean
Std(

Deviation Median
95th(

percentile Max
Argentina 106 368.35(((((((((( 0.43(((((((((((((( 0.74(((((((((((((( 0.18(((((((((((((( 1.60(((((((((((((( 5.52(((((((((((((( 62.52%%%%%%%%%%%%%
Japan 12 1,489.27((((((( 1.95(((((((((((((( 2.96(((((((((((((( 0.36(((((((((((((( 8.70(((((((((((((( 10.64(((((((((((( 50.09%%%%%%%%%%%%%
United(States 63 2,092.53((((((( 2.31(((((((((((((( 4.24(((((((((((((( 0.70(((((((((((((( 12.05(((((((((((( 31.02(((((((((((( 25.70%%%%%%%%%%%%%

Panel(1:(Across(all(firms(and(countries
Total(

volume(of(
exports,(in($(

millions

No.(of(
unique(

exportersYear

Summary(statistics(on(the(annual(volume(of(exports(per(exporting(
firm,(across(all(countries((in($million/firm)

Summary(statistics(on(the(annual(volume(of(exports(per(export(
firm,(by(country((in($million/firm)

Panel(2:(For(select(countries,(across(all(years

No.(of(
unique(

exporters(in(
all(years

Total(
volume(of(
exports(in(

all(years,(in(
$(millionsCountry

Notes:U
Table(includes(exporters(and(export(volume(in(the(Chilean(chemical(sector.((Across(all(years,(a(total(of(266(
unique(firms(manufacture(products(in(the(chemical(sector.((We(focus(on(exports(to(22(countries,(which(
include(all(export(destinations(with(at(least(five(unique(firms(exporting(to(the(country(in(all(years(between(
1996(and(2005.((Data(on(exporters(and(export(volume(collected(from(the(Chilean(customs(database.U
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Table 2: Parameter estimates from export model, alternative specifications

Method sigma constant distance
Maximum0likelihood,0perfect0foresight Estimate 1,074.03000000 760.88000000000 1,180.08000000000

Std0error 46.7400000000000 36.6700000000000 53.2100000000000000
Maximum0likelihood,0twoDstep0approach Estimate 701.91000000000 502.20000000000 812.25000000000000

Std0error 24.3300000000000 20.1500000000000 30.0100000000000000
Moment0Inequalities Lower0bound0of0identified0set 311.74000000000 218.34000000000 428.32000000000000

Upper0bound0of0identified0set 340.96000000000 245.82000000000 478.96000000000000
Panel0B:0Confidence0regions0for0fixed0costs0specification0(in0$000s)
Method sigma constant distance
Maximum0likelihood,0perfect0foresight Lower0bound,095%0Conf0Int 982.43000000000 689.00000000000 1,075.79000000000

Upper0bound,095%0Conf0Int 1,165.63000000 832.76000000000 1,284.38000000000
Maximum0likelihood,0twoDstep0approach Lower0bound,095%0Conf0Int 654.22000000000 462.70000000000 753.44000000000000

Upper0bound,095%0Conf0Int 749.61000000000 541.70000000000 871.06000000000000
Moment0Inequalities Lower0bound,095%0Conf0Set 177.78000000000 120.45000000000 242.11000000000000

Upper0bound,095%0Conf0Set 470.59000000000 317.65000000000 647.06000000000000

Panel0A:0Parameter0estimates0for0fixed0costs0specification0(in0$000s)
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Table 3: Robustness: moment inequalities using alternative instrument functions

Specification
lower.
bound

upper.
bound

lower.
bound

upper.
bound

lower.
bound

upper.
bound

Includes.moments.with.weights.raised.to.{0,1} 166.67...... 571.43...... 100.00...... 371.43...... 183.33...... 800.00....... 0.00
Includes.moments.with.weights.raised.to.{0,1.5} 177.78...... 470.59...... 120.45...... 317.65...... 242.11...... 647.06....... 0.00
Includes.moments.with.weights.raised.to.{0,1,2} 190.48...... 470.59...... 130.95...... 317.65...... 300.00...... 647.06....... 0.28
Includes.moments.with.weights.raised.to.{0,2} 275.86...... 444.44...... 193.10...... 305.56...... 378.57...... 622.22....... 0.47

sigma constant distance

PFvalue
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Table 4: Estimates of export entry costs, in $000s

Destination)country Estimate

Lower)
bound)
(95%)CI)

Upper)
bound)
(95%)CI) Estimate

Lower)
bound)
(95%)CI)

Upper)
bound)
(95%)CI)

Lower)
bound,)
estimate

Upper)
bound,)
estimate

Lower)
bound)
(95%)Conf)
Set)

Upper)
bound)
(95%)Conf)
Set)

Argentina 894.03)))))))) 799.05)))))))) 989.01)))))))) 593.85)))))))) 551.04)))))))) 636.65)))))))) 269.99)))))))) 298.15)))))))) 162.00)))))))) 388.00))))))))
Japan 2,796.22))))) 2,518.45))))) 3,073.99))))) 1,903.12))))) 1,779.29))))) 2,026.95))))) 977.63)))))))) 1,061.96))))) 637.37)))))))) 1,421.89)))))
United)States 1,736.93))))) 1,564.98))))) 1,908.89))))) 1,174.02))))) 1,099.20))))) 1,248.83))))) 592.55)))))))) 632.03)))))))) 414.85)))))))) 841.07))))))))

Via)maximum)likelihood,)perfect)
foresight

Via)maximum)likelihood,)twoQstep)
approach Via)moment)inequalities

Table 5: Robustness: export entry costs from moment inequalities using alternative instrument functions, in $000s

Destination)country

Lower)

bound)

(95%)Conf)

Set)

Upper)

bound)

(95%)Conf)

Set)

Lower)

bound)

(95%)Conf)

Set)

Upper)

bound)

(95%)Conf)

Set)

Lower)

bound)

(95%)Conf)

Set)

Upper)

bound)

(95%)Conf)

Set)

Lower)

bound)

(95%)Conf)

Set)

Upper)

bound)

(95%)Conf)

Set)

Argentina 139.02))))))) 456.86))))))) 162.00))))))) 388.00))))))) 172.32))))))) 389.33))))))) 239.79))))))) 373.25)))))))

Japan 493.29))))))) 1,729.79)))) 637.37))))))) 1,421.89)))) 699.23))))))) 1,427.77)))) 868.00))))))) 1,362.06))))

United)States 307.73))))))) 1,011.68)))) 414.85))))))) 841.07))))))) 424.95))))))) 846.95))))))) 527.52))))))) 805.45)))))))

Includes)moments)

with)weights)raised)to)

{0,1}

Includes)moments)

with)weights)raised)to)

{0,1.5}

Includes)moments)

with)weights)raised)to)

{0,2}

Includes)moments)

with)weights)raised)to)

{0,1,2}
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Table 6: Fit measure: predicted number of exporters under alternative specifications, for select countries in the year 2005

Lower&bound Upper&Bound Lower&bound Upper&Bound
Argentina 46&&&&&&&&&&&&&&&&&&&& 41.00&&&&&&&&&&&&&&&&&& 40.13&&&&&&&&&&&&&&&&&& 42.00&&&&&&&&&&&&&&&&&& 46.90&&&&&&&&&&&&&&&&&& 31.08&&&&&&&&&&&&&&&&&& 52.24&&&&&&&&&&&&&&&&&&
Japan 5&&&&&&&&&&&&&&&&&&&&&& 2.41&&&&&&&&&&&&&&&&&&&& 1.84&&&&&&&&&&&&&&&&&&&& 4.51&&&&&&&&&&&&&&&&&&&& 7.20&&&&&&&&&&&&&&&&&&&& 2.31&&&&&&&&&&&&&&&&&&&& 12.66&&&&&&&&&&&&&&&&&&
United&States 24&&&&&&&&&&&&&&&&&&&& 15.69&&&&&&&&&&&&&&&&&& 19.04&&&&&&&&&&&&&&&&&& 19.26&&&&&&&&&&&&&&&&&& 24.28&&&&&&&&&&&&&&&&&& 12.52&&&&&&&&&&&&&&&&&& 34.24&&&&&&&&&&&&&&&&&&

Observed&
Data

Destination&
Country

&Via&moment&inequalities,&using&
identified&set&

&Via&moment&inequalities,&using&
confidence&set&

Predictions&from&Model

&Via&Maximum&
Likelihood,&
under&Perfect&
Foresight&

&Via&Maximum&
Likelihood,&

under&twoSstep&
approach&
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Table 7: Counterfactual predictions: Export participation and export volume after 40% decrease in entry costs, in select countries
in the year 2005

Lower&bound Upper&Bound Lower&bound Upper&Bound

Argentina 61.64&&&&&&&&&&&&&&&&& 60.96&&&&&&&&&&&&&&&&& 64.35&&&&&&&&&&&&&&&&& 68.18&&&&&&&&&&&&&&&&& 55.52&&&&&&&&&&&&&&&&& 73.48&&&&&&&&&&&&&&&&&
Japan 16.36&&&&&&&&&&&&&&&&& 14.56&&&&&&&&&&&&&&&&& 17.45&&&&&&&&&&&&&&&&& 21.90&&&&&&&&&&&&&&&&& 10.28&&&&&&&&&&&&&&&&& 32.69&&&&&&&&&&&&&&&&&
United&States 40.41&&&&&&&&&&&&&&&&& 45.50&&&&&&&&&&&&&&&&& 44.91&&&&&&&&&&&&&&&&& 52.26&&&&&&&&&&&&&&&&& 35.01&&&&&&&&&&&&&&&&& 61.66&&&&&&&&&&&&&&&&&

Argentina 17.86&&&&&&&&&&&&&&&&& 17.26&&&&&&&&&&&&&&&&& 23.08&&&&&&&&&&&&&&&&& 25.98&&&&&&&&&&&&&&&&& 20.51&&&&&&&&&&&&&&&&& 28.95&&&&&&&&&&&&&&&&&
Japan 40.31&&&&&&&&&&&&&&&&& 35.74&&&&&&&&&&&&&&&&& 62.90&&&&&&&&&&&&&&&&& 71.47&&&&&&&&&&&&&&&&& 49.94&&&&&&&&&&&&&&&&& 89.96&&&&&&&&&&&&&&&&&
United&States 74.38&&&&&&&&&&&&&&&&& 90.13&&&&&&&&&&&&&&&&& 100.01&&&&&&&&&&&&&&& 107.93&&&&&&&&&&&&&&& 88.36&&&&&&&&&&&&&&&&& 120.40&&&&&&&&&&&&&&&

Panel&1:&Export&participation

Panel&2:&Export&volume&(in&$&millions)

Predictions&from&Model

Destination&
Country

&Via&Maximum&
Likelihood,&
under&Perfect&
Foresight&

&Via&Maximum&
Likelihood,&

under&twoVstep&
approach&

&Via&moment&inequalities,&using&
identified&set&

&Via&moment&inequalities,&using&
confidence&set&
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Table 8: Counterfactual predictions: Comparison of alternative specifications relative to the perfect foresight model, after 40%
decrease in entry costs in the year 2005

Lower&bound Upper&Bound

Argentina 61.64&&&&&&&&&&&&&&&&&&&&&&&&& 71.10% 4.39% 10.61%
Japan 16.36&&&&&&&&&&&&&&&&&&&&&&&&& 711.02% 6.67% 33.87%
United&States 40.41&&&&&&&&&&&&&&&&&&&&&&&&& 12.58% 11.13% 29.31%

Argentina 17.86&&&&&&&&&&&&&&&&&&&&&&&&& 73.36% 29.24% 45.51%
Japan 40.31&&&&&&&&&&&&&&&&&&&&&&&&& 711.31% 56.07% 77.32%
United&States 74.38&&&&&&&&&&&&&&&&&&&&&&&&& 21.18% 34.46% 45.11%

Panel&1:&Export&participation

Panel&2:&Export&volume&(in&$&millions)

&Prediction&Via&
Maximum&

Likelihood,&under&
Perfect&Foresight&

%&change&in&prediction&when&comparing&perfect&foresight&

Destination&
Country

&Maximum&
Likelihood,&under&
two7step&approach&

&Moment&inequalities,&using&identified&
set&
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Table 9: Counterfactual predictions: Export participation and export volume after 20% Chilean peso depreciation, in select countries
in the year 2005

Lower&bound Upper&Bound Lower&bound Upper&Bound

Argentina 43.91&&&&&&&&&&&&&&&&& 42.89&&&&&&&&&&&&&&&&& 49.05&&&&&&&&&&&&&&&&& 54.96&&&&&&&&&&&&&&&&& 37.43&&&&&&&&&&&&&&&&& 65.14&&&&&&&&&&&&&&&&&
Japan 5.64&&&&&&&&&&&&&&&&&&& 4.59&&&&&&&&&&&&&&&&&&& 12.84&&&&&&&&&&&&&&&&& 20.86&&&&&&&&&&&&&&&&& 8.78&&&&&&&&&&&&&&&&&&& 29.93&&&&&&&&&&&&&&&&&
United&States 22.16&&&&&&&&&&&&&&&&& 31.08&&&&&&&&&&&&&&&&& 30.06&&&&&&&&&&&&&&&&& 44.00&&&&&&&&&&&&&&&&& 22.11&&&&&&&&&&&&&&&&& 68.94&&&&&&&&&&&&&&&&&

Argentina 35.69&&&&&&&&&&&&&&&&& 33.41&&&&&&&&&&&&&&&&& 50.70&&&&&&&&&&&&&&&&& 55.33&&&&&&&&&&&&&&&&& 43.99&&&&&&&&&&&&&&&&& 64.51&&&&&&&&&&&&&&&&&
Japan 83.75&&&&&&&&&&&&&&&&& 71.69&&&&&&&&&&&&&&&&& 140.87&&&&&&&&&&&&&&& 175.25&&&&&&&&&&&&&&& 115.91&&&&&&&&&&&&&&& 202.80&&&&&&&&&&&&&&&
United&States 153.36&&&&&&&&&&&&&&& 201.03&&&&&&&&&&&&&&& 217.14&&&&&&&&&&&&&&& 238.89&&&&&&&&&&&&&&& 195.01&&&&&&&&&&&&&&& 255.04&&&&&&&&&&&&&&&

Panel&1:&Export&participation

Panel&2:&Export&volume&(in&$&millions)

Predictions&from&Model

Destination&
Country

&Via&Maximum&
Likelihood,&
under&Perfect&
Foresight&

&Via&Maximum&
Likelihood,&

under&twoVstep&
approach&

&Via&moment&inequalities,&using&
identified&set&

&Via&moment&inequalities,&using&
confidence&set&
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Table 10: Counterfactual predictions: Percentage changes in export participation and volume under moment inequalities, in select
countries in the year 2005

!Lower!bound! !Upper!Bound! !Lower!bound! !Upper!Bound! !Lower!bound! !Upper!Bound!

Argentina 46.00!!!!!!! 45.53!!!!!!!!!!!!!!! 46.90!!!!!!!!!!!!!!! 14% 21% 2% 12%
Japan 5.00!!!!!!!!! 5.30!!!!!!!!!!!!!!!!! 7.20!!!!!!!!!!!!!!!!! 38% 69% 25% 67%
United!States 24.00!!!!!!! 20.79!!!!!!!!!!!!!!! 24.28!!!!!!!!!!!!!!! 27% 43% 9% 36%

Argentina 27.60!!!!!!! 18.91!!!!!!!!!!!!!!! 21.75!!!!!!!!!!!!!!! 3% 16% 37% 49%
Japan 9.91!!!!!!!!! 37.97!!!!!!!!!!!!!!! 51.35!!!!!!!!!!!!!!! 9% 33% 44% 72%
United!States 51.49!!!!!!! 80.41!!!!!!!!!!!!!!! 86.32!!!!!!!!!!!!!!! 6% 14% 40% 49%

%change(in(logs

(

Panel!1:!Export!participation

Panel!2:!Export!volume!(in!$!millions)

!Predictions!at!baseline!using!
identified!set!

!%!Change!relative!to!baseline!
prediction!from!a!40%!

decrease!in!export!entry!costs!

!%!Change!relative!to!baseline!
prediction!from!a!20%!

decrease!in!the!real!exchange!
rate!Observed!

data
Destination!
Country
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Figure 1: Confidence sets for export participation model, under alternative functional forms
for the instrument set
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Appendix

A.1 Proxy for export revenue: Details

First, we describe how we can combine the structure introduced in Sections 2.1 and 2.2 with data on (i)
aggregate exports from h to j in t, Rjt; (ii) domestic sales for every active firm, {riht; i = 1, . . . , Nt}; and, (iii)
the set of exporting firms, {dijt; i = 1, . . . , Nt}, to define a perfect proxy for the export revenue that firm i
would obtain in country j if it were to export to it in year t.

Given the expression for firm i’s potential export revenue in j in equation (4), aggregating rijt across all
firms located in country h that export to country j, we can write the aggregate exports from h to j at t as

Rjt =

∫
i∈Nt

dijtrijtdi =

[
η

η − 1

τjtct
Pjt

]1−η

Yjte
η
jtVjt, (35)

where Vjt is defined as

Vjt =

∫
i∈Nt

dijta
(1−η)
it di. (36)

Note that Vjt is simply the sum of the physical productivity terms, ait, (to the power of an exponent that
depends on η) across all firms exporting to the destination country j in year t. We can therefore proxy for all
the country specific covariates in equation (4) by (Rjt/Vjt) and rewrite rijt as

rijt =
a

(1−η)
it

Vjt
Rjt (37)

In order to proxy for the unobserved firm specific physical productivity of firm i relative to the sum of these
physical productivities for all firms exporting to country j, we will use information on the domestic revenue
of every firm i = 1, . . . , Nt. Note that, from equation (4), in the case in which j = h and under the standard
assumption in trade models that there are no domestic transport costs, τiht = 1 for every firm i, it holds

riht =

[
η

η − 1

aitct
Pht

]1−η

Yht, (38)

and, therefore, for any two firms i and i′, we can write

a1−η
it

a1−η
i′t

=
riht
ri′ht

. (39)

Using this expression, we can rewrite the first term in equation (37) as

a
(1−η)
it

Vjt
=

1
Vjt

a
(1−η)
it

=
1∫

s∈Nt
dsjt

(
ast
ait

)(1−η)

ds

=
1∫

s∈Nt
dsjt(rsht/riht)ds

. (40)

Plugging back this expression into equation (37), we obtain the expression for rijt in terms of observable
covariates in equation (17).

A.2 Bias in ML Estimates Under Perfect Foresight Assumption

In this section, we generate various simulated datasets for a binary probit export entry model under different
assumptions on the distribution of firms’ unobserved expectations and on the distribution of their expectational
errors. Specifically, we assume that firm i decides whether to export to country j according to the model

dij = 1{ψ1E[rij |Jij ]− ψ2 − νij},

where dij = 1 if firm i exports to j, ψ1 = ψ2 = 0.5, and νij ∼ N(0,
√

2) and independent of any other covariate.
Mimicking the estimation problem described in Section 4, we assume that the researcher does not observe
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E[rij |Jij ] but only rij ,

rij = E[rij |Jij ] + εij .

In Table A.1 below, for different distributions of the true unobserved expectations, E[rij |Jij ], and expectational
error, εij , we show the point estimates and standard errors from estimating ψ1 and ψ2 using a likelihood function
that relies on the individual likelihood

P(dij = 1|rij) = Φ((
√

2)−1(β1rij − β2)).

Table A.1: Bias in ML Estimates

Model Distribution of Distribution of ψ̂1 ψ̂2

E[rij |Jij ] εijt

1 N(0, 1) N(0, 0.25) 0.4706 0.4994
(0.0014) (0.0014)

2 N(0, 1) N(0, 0.5) 0.3960 0.4951
(0.0013) (0.0014)

3 N(0, 1) N(0, 1) 0.2426 0.4865
(0.0010) (0.0013)

4 t2 t2 0.1573 0.4584
(0.0006) (0.0014)

5 t5 t5 0.2274 0.4773
(0.0008) (0.0014)

6 t20 t20 0.2394 0.4865
(0.0009) (0.0013)

7 t50 t50 0.2436 0.4872
(0.0010) (0.0013)

8 log-normal(0, 1) log-normal(0, 1) 0.1705 0.5436
(0.0006) (0.0014)

9 −log-normal(0, 1) −log-normal(0, 1) 0.1435 0.4767
(0.0006) (0.0013)

Notes: All estimates in this table are normalized by scale by setting var(νij) =
2. In order to estimate each of the models, we generate 1,000,000 observations
from the distributions of νij , E[rij |Jij ], and N(0, 0.25) described in columns
2 and 3 and in the main text. Whenever draws are generated from the log-
normal distribution, we re-center them at zero. The true parameter values are
ψ1 = ψ2 = 0.5.

The first three models in Table A.1 are specific examples of the general model studied in Yatchew and
Griliches (1985). The results in columns 4 and 5 of Table A.1 show that there is downward bias in the estimate of
ψ1 and that the bias is larger as the variance of the expectational error, εijt increases. This is consistent with the
analytical formula for the bias term in Yatchew and Griliches (1985). In models 4 to 10, we explore departures
from the setting studied in Yatchew and Griliches (1985). Specifically, we depart from the assumption that
both the unobserved firms’ expectations and the expectational errors are normally distributed. In models 4
to 7, we depart from the normal distribution by choosing a distribution both for the unobserved expectations
and expectational errors that has fatter tails than the normal distribution. The downward bias in the estimate
of ψ1 persists and it is larger the higher the dispersion in the distribution of unobserved expectations and
expectational errors. In models 8 and 9, we depart from the normal distribution by choosing distributions
both for unobserved expectations and expectational errors that are asymmetric. Specifically, model 8 assumes
distributions that are positively skewed, and model 9 distributions that are negatively skewed. In all cases,
the estimate of the coefficient on the covariate that we are measuring with error (i.e. affected by expectational
error) is biased downwards.

The estimates shown in Table A.1 condition on the normalization var(νij) = 2. In practice, we never know
what the variance of the structural error is. However, standard models of international trade as that described
in Section 2 imply that the coefficient on the expected export revenues is equal to the inverse of the price
elasticity of demand, 1/η. Furthermore, the literature in international trade provides multiple estimates of this
price elasticity of demand (Feenstra, 1994; Broda and Weinstein, 2006), Accordingly, we choose the coefficient
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on expected revenue as the normalizing constant. Given the choice of a particular constant k as the value of
ψ1, we obtain rescaled estimates of the entry cost coefficient by multiplying our estimates ψ̂2 by k/ψ̂1. Given
that the true value of k in our simulations is 0.5, the upward bias in the entry costs parameters is given by the
ratio

(ψ1/ψ̂1)ψ̂2 − ψ2

ψ2
=

(0.5/ψ̂1)ψ̂2 − 0.5

0.5
.

Table B.1 reports this number for the nine models described in Table A.1. The results show that, in the
different models, assuming perfect foresight implies that we over estimate export entry costs in a magnitude
that varies between 6% (for the model in which the variance of the expectational error is minimal) and 219%
(for a model in which the distribution of the expectational error is not symmetric).

Table B.1: Bias in Entry Costs Estimates

Model 1 2 3 4 5 6 7 8 9

Bias 6% 25% 100% 191% 110% 103% 100% 219% 167%

A.3 Partial Identification: Example

The data are informative about the joint distribution of (dijt, Zijt, rijt) across i, j, and t. Consistently with
the possible vectors of instruments discussed in the main text, we assume that we always define Zijt such that
distj ∈ Zijt. We denote the joint distribution of the vector (dijt, Zijt, rijt) as P(dijt, Zijt, rijt). For the sake of
simplicity in the notation, let’s use reijt to denote E[rijt|Jijt]. Note that we can write

P(dijt, Zijt, rijt) =

∫
f(dijt, Zijt, rijt, r

e
ijt)dr

e
ijt,

where, for any vector (x1, . . . , xK), we use f(x1, . . . , xK) to denote the joint distribution of (x1, . . . , xK). We
can further write

P(dijt, Zijt, rijt) =

∫
fa(dijt|reijt, rijt, Zijt)fa(rijt|reijt, Zijt)fa(reijt|Zijt)P(Zijt)dr

e
ijt, (41)

where we use P(Zijt) to denote that the marginal distribution of Zijt is directly observable in the data.
Any structure Sa ≡ {fa(dijt|reijt, rijt, Zijt), fa(rijt|reijt, Zijt), fa(reijt|Zijt)} is admissible as long as it verifies
the restrictions imposed in Section 2 and equation (41). The model in Section 2 imposes the following two
restrictions on the elements of equation (41). First,

fa(dijt|reijt, rijt, Zijt) = f(dijt|reijt, Zijt; γa) =(
Φ
(
(γa2 )−1(kreijt − γa0 − γa1distj)))dijt(1− Φ

(
(γa2 )−1(kreijt − γa0 − γa1distj)))1−dijt

. (42)

Second, Zijt ⊂ Jijt and, therefore, given the definition of reijt as E[rijt|Jijt], the expectation of the distribution
f(rijt|reijt, Zijt) is equal to reijt. The model presented in Section 2 does not imply any additional restrictions
on the elements of equation (41).

Here, we show that γ is partially identified in a model that imposes restrictions that are stronger than
those in Section 2. Specifically, we impose the following additional restrictions on the elements of equation (41)

γ1 is known and equal to 0, (43a)

rijt = reijt + εijt, εijt|(reijt,Wijt) ∼ N(0, σ2
ε) (43b)

Zijt = reijt +Wijt Wijt|reijt ∼ N((σw/σre)ρrew(reijt − µre), (1− ρ2
rew)σ2

w) (43c)

reijt ∼ N(µre , σ
2
re) (43d)

where µre = E[reijt], σ
2
re = var(Reijt), σ

2
w = var(Wijt). Below, we show that, even after adding the assumptions
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in equation (43), we can still find at least two structures

Sa1 ≡ {(γa10 , γa12 ), fa1(rijt|reijt, Zijt), fa1(reijt|Zijt)},
Sa2 ≡ {(γa20 , γa22 ), fa2(rijt|reijt, Zijt), fa2(reijt|Zijt)},

that: (1) verify the restrictions in equations (42) and (43); (2) verify equation (41); and (3) γa1 6= γa2 . If γ is
partially identified in this stricter model, it will also be partially identified in the more general model described
in Section 2.

Equation (43a) simplifies the identification exercise discussed here because the only parameters that are
left to identify are (γ0, γ2) –we can set γ1 = 0 in equation (42)–. Equation (43b) assumes that the expectational
error not only has mean zero and finite variance but is also normally distributed. It implies that the conditional
density f(rijt|reijt, Zijt) is normal:

f(rijt|reijt, Zijt) =
1

σε
√

2π
exp

[
− 1

2

(rijt − reijt
σε

)2]
.

By applying Bayes’ rule, both equations (43c) and (43d) jointly determine the conditional density f(reijt|Zijt)
entering equation (41).

If we had imposed the assumption that ρrew = 0 and, therefore, Wijt is independent of reijt, then the
model described in Section 2 and the additional restrictions in equations (43b) and (43c) would have become
a simple model of repeated measurements of the unobserved covariate reijt. In this context, as Evdokimov and
White (2012) show, one may apply Kotlarski’s identity and recover the distribution of reijt. The feature that
makes the model described in Section 2 and equations (43b) and (43c) depart from a setting with repeated
measurements is that we allow the distribution of Wijt to freely depend on the value of reijt. As we show below,
in this case, the parameter vector γ is only partially identified.

Result A.3.1 There exists empirical distributions of the vector of observable variables (d, Z,X), P(d, Z,X),
such that there are at least two structures Sa1 and Sa2 for which

1. both Sa1 and Sa2 verify equations (41), (42), and (43);

2. γa1 6= γa2 .

This result can be proved by combining the following two lemmas.

Lemma A.3.1 The parameter vector (γ0, γ2) is point-identified only if the parameter σre = var(reijt) is point-
identified.

Proof: Define reijt = σre r̃
e
ijt, such that var(r̃eijt) = 1. We can then rewrite equation (42) as(

Φ
(
k
σre

γ2
reijt −

γ0

γ2

))dijt(
1− Φ

(
k
σre

γ2
reijt −

γ0

γ2

))1−dijt
.

The parameter γ2 only enter likelihood function in equation (41) either dividing σre or dividing γ0. Therefore,
we can only separately identify γ0 and γ2 if we know σre . �

Lemma A.3.2 The parameter vector σre is point-identified if and only if the parameter ρrew is assumed to be
equal to zero.

Proof: From equations (43b), (43c) and (43d), we can conclude that rijt and Zijt are jointly normal. Therefore,
all the information arising from observing their joint distribution is summarized in three moments:

σ2
r = σ2

re + σ2
ε ,

σ2
z = σ2

re + σ2
w + 2ρrewσreσw,

σrz = σ2
re + ρrewσreσw (44)

The left hand side of these three equations is directly observed in the data. If we impose the assumption that
ρrew = 0, then σrz = σ2

re and, therefore, from Lemma A.3.1, the vector γ is point identified. If we allow ρrew
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to be different from zero, this system of equations in equation (45) only allows to define bounds on σ2
re . Note

that we can rewrite the system of equations in equation (45) as

σ2
r = σ2

re + σ2
ε ,

σ2
z = σ2

re + σ2
w + 2σrew

σrz = σ2
re + σrew. (45)

This is a linear system with 3 equations and 4 unknowns, (σ2
re , σ

2
ε , σ

2
w, σrew). Therefore, the system is underi-

dentified and does not have a unique solution for σ2
re .

A.4 Proof of Theorem 1

Lemma 1 Let L(dijt|Jijt; θ) denote the log-likelihood conditional on Jijt. Suppose the assumptions in equa-
tions (2), (6), and (8) hold and we impose the normalization η−1 = k. Then:

∂L(dijt|Jijt; θ)
∂θ

= E

[
dijt

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

− (1− dijt)
∣∣∣∣Jijt] = 0. (46)

Proof: It follows from the model in Section 2 that the log-likelihood conditional on Jijt can be written as

L(dijt|Jijt; θ) = E

[
dijt log(1− Φ(−σ−1

ν (kE[rijt|Jijt]− β0 − β1distj)))

+ (1− dijt) log(Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))

∣∣∣Jijt].
The score function is given by

∂L(dijt|Jijt; θ)
∂θ

= (47)

E

[
dijt

1

1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

∂(1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))

∂θ

+(1− d)
1

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∂Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∂θ

∣∣∣∣Jijt] = 0.

Reordering terms

∂L(dijt|Jijt; θ)
∂θ

= E

[
∂Φ(−σ−1

ν (kE[rijt|Jijt]− β0 − β1distj))/∂θ

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

[
dijt

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

×

(48)

×∂(1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))/∂θ

∂Φ(−kE[rijt|Jijt]− β0 − β1distj))/∂θ
+ (1− dijt)

∣∣∣∣Jijt] = 0. (49)

Given that

∂Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))/∂θ

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

is a function of Jijt and different from 0 for any value of the index σ−1
ν (kE[rijt|Jijt]− β0 − β1distj), and

∂(1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))/∂θ

∂Φ(−θX∗ijt)/∂θ
= −1

we can simplify:

∂L(dijt|Jijt; θ)
∂θ

= E

[
dijt

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

− (1− dijt)
∣∣∣∣Jijt] = 0.

Equation (46) follows by symmetry of the function Φ(·). �
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Lemma 2 Suppose the assumptions in equations (7) and (8) hold. Then

E

[
dijt

1− Φ(σ−1
ν (krijt − β0 − β1distj))

Φ(σ−1
ν (krijt − β0 − β1distj))

∣∣∣∣Jijt] ≥ E[dijt 1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Jijt]. (50)

Proof: It follows from the definition of εijt as εijt = rijt−E[rijt|Jijt] and the assumptions in equations (7) and
(8) that E[εijt|Jijt, νijt] = 0. From equations (2), (6) and the assumption that distj ∈ Jijt it follows that dijt
may be written as a function of the vector (Jijt, νijt); i.e. dijt = d(Jijt, νijt). Therefore, E[εijt|Jijt, dijt] = 0.
Since

1− Φ(y)

Φ(y)

is convex for any value of y and E[εijt|Jijt, dijt] = 0, by Jensen’s Inequality

E

[
dijt

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj + kεijt))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj) + kεijt)

∣∣∣∣Jijt]
≥

E

[
dijt

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Jijt].
Equation (50) follows from the equality krijt = kE[rijt|Jijt] + kεijt. �

Corollary 2 Suppose Zijt ∈ Jijt. Then:

E

[
dijt

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

− (1− dijt)
∣∣∣∣Zijt] = 0. (51)

and

E

[
dijt

1− Φ(σ−1
ν (krijt − β0 − β1distj))

Φ(σ−1
ν (krijt − β0 − β1distj))

∣∣∣∣Zijt] ≥ E[dijt 1− Φ(σ−1
ν (kE[rijt|Zijt]− β0 − β1distj))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Zijt]. (52)

Proof: The results follow from Lemmas 1 and 2 and the application of the Law of Iterated Expectations. �

Lemma 3 Let L(dijt|Jijt; θ) denote the log-likelihood conditional on Jijt. Suppose the assumptions in equa-
tions (2), (6), and (8) hold and we impose the normalization η−1 = k. Then:

∂L(dijt|Jijt; θ)
∂θ

= E

[
(1− dijt)

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

− dijt
∣∣∣∣Jijt] = 0. (53)

Proof: From equation (47), reordering terms

∂L(dijt|Jijt; θ)
∂θ

= E

[
∂(1− Φ(−σ−1

ν (kE[rijt|Jijt]− β0 − β1distj)))/∂θ

1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

[
dijt+

+(1− dijt)
1− Φ(−σ−1

ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∂Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))/∂θ

∂(1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))/∂θ

∣∣∣∣Jijt] = 0.

Given that

∂(1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))/∂θ

1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

is a function of Jijt and different from 0 for any value of the index σ−1
ν (kE[rijt|Jijt]− β0 − β1distj), and

∂Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))/∂θ

∂(1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)))/∂θ

= −1
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we can simplify:

∂L(dijt|Jijt; θ)
∂θ

= E

[
(1− dijt)

1− Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(−σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

− dijt
∣∣∣∣Jijt] = 0.

Equation (53) follows by symmetry of the function Φ(·). �

Lemma 4 Suppose the assumptions in equations (7) and (8) hold. Then

E

[
(1− dijt)

Φ(σ−1
ν (krijt − β0 − β1distj))

1− Φ(σ−1
ν (krijt − β0 − β1distj))

∣∣∣∣Jijt]
≥

E

[
(1− dijt)

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Jijt]. (54)

Proof: It follows from the definition of εijt as εijt = rijt−E[rijt|Jijt] and the assumptions in equations (7) and
(8) that E[εijt|Jijt, νijt] = 0. From equations (2), (6) and the assumption that distj ∈ Jijt it follows that dijt
may be written as a function of the vector (Jijt, νijt); i.e. dijt = d(Jijt, νijt). Therefore, E[εijt|Jijt, dijt] = 0.
Since

Φ(y)

1− Φ(y)

is convex for any value of y and E[εijt|Jijt, dijt] = 0, by Jensen’s Inequality

E

[
dijt

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj + kεijt))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj) + kεijt)

∣∣∣∣Jijt]
≥

E

[
dijt

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Jijt].
Equation (54) follows from the equality krijt = kE[rijt|Jijt] + kεijt. �

Corollary 3 Suppose Zijt ∈ Jijt. Then:

E

[
(1− dijt)

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

− dijt
∣∣∣∣Zijt] = 0. (55)

and

E

[
(1− dijt)

Φ(σ−1
ν (krijt − β0 − β1distj))

1− Φ(σ−1
ν (krijt − β0 − β1distj))

∣∣∣∣Zijt]
≥

E

[
(1− dijt)

Φ(σ−1
ν (kE[rijt|Zijt]− β0 − β1distj))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Zijt]. (56)

Proof: The results follow from Lemmas 3 and 4 and the application of the Law of Iterated Expectations. �

Proof of Theorem 1 Combining equations (51) and (52), we obtain the inequality defined by equations
(21) and (22a). Combining equations (55) and (56), we obtain the inequality defined by equations (21) and
(22b). �
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A.5 Proof of Theorem 2

Lemma 5 Suppose equations (2) and (6) hold. Then,

E[dijt
(
kE[rijt|Jijt]− β0 − β1distj − νijt)|Jijt] ≥ 0. (57)

Proof: From equations (2) and (6),

dijt = 1{kE[rijt|Jijt]− β0 − β1distj − νijt ≥ 0}.

This implies

dijt
(
kE[rijt|Jijt]− β0 − β1distj − νijt) ≥ 0.

This inequality holds for every firm i, country j, and year t. Therefore, it will also hold in expectation
conditional on Jijt. �

Lemma 6 Suppose equations (2), (6) and (8) hold. Then

E

[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)
+ (1− dijt)σν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Jijt] ≥ 0. (58)

Proof: From equation (57),

E
[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)∣∣Jijt]−E[dijtνijt∣∣Jijt] ≥ 0. (59)

Since the assumption in equation (8) implies that E[νijt|Jijt] = 0, it follows that

E[dijtνijt + (1− dijt)νijt|Jijt] = 0,

and we can rewrite equation (59) as

E
[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)∣∣Jijt]+E
[
(1− dijt)νijt

∣∣Jijt] ≥ 0. (60)

Applying the Law of Iterated Expectations, it follows that

E
[
(1− dijt)νijt

∣∣Jijt] = E
[
E[(1− dijt)νijt|dijt,Jijt]

∣∣Jijt] = E
[
(1− dijt)E[νijt|dijt,Jijt]

∣∣Jijt] =

P (dijt = 1|Jijt)× 0×E[νijt|dijt = 1,Jijt] + P (dijt = 0|Jijt)× 1×E[νijt|dijt = 0,Jijt] =

P (dijt = 0|Jijt)E[νijt|dijt = 0,Jijt] = E[(1− dijt)|Jijt]E[νijt|dijt = 0,Jijt] = E
[
(1− dijt)E[νijt|dijt = 0,Jijt]

∣∣Jijt],
and we can rewrite equation (60) as

E
[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)
+ (1− dijt)E[νijt|dijt = 0,Jijt]

∣∣Jijt] ≥ 0. (61)

Using the definition of dijt in equation (6), it follows

E[νijt|dijt = 0,Jijt] = E[νijt|νijt ≥ kE[rijt|Jijt]− β0 − β1distj ,Jijt]

and, following equation (8), we can rewrite

E[νijt|dijt = 0,Jijt] = σν
φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) .
Equation (58) follows by applying this equality to equation (61). �

Lemma 7 Suppose the assumptions in equation (7) and (8) hold. Then

E

[
dijt
(
krijt − β0 − β1distj

)∣∣∣Jijt] = E

[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)∣∣∣Jijt] (62)
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Proof: From the definition of εijt as εijt = rijt −E[rijt|Jijt],

E

[
dijt
(
krijt − β0 − β1distj

)∣∣∣Jijt] = E

[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)∣∣∣Jijt]+E
[
kdijtεijt

∣∣∣Jijt]. (63)

From equations (7) and (8), E[εijt|Jijt, νijt] = 0. From equations (2), (6) and the assumption that distj ∈ Jijt
it follows that dijt is a function of the vector (Jijt, νijt); i.e. dijt = d(Jijt, νijt). Therefore, E[εijt|Jijt, dijt] = 0
and, applying the Law of Iterated Expectations,

E
[
kdijtεijt

∣∣Jijt] = E
[
kdijtE

[
εijt
∣∣Jijt, dijt]∣∣Jijt] = E

[
kdijt × 0

∣∣Jijt] = 0.

Applying this result to equation (63) yields equation (62).

Lemma 8 Suppose the assumptions in equation (7) and (8) hold. Then

E

[
(1− dijt)σν

φ
(
σ−1
ν (krijt − β0 − β1distj)

)
1− Φ

(
σ−1
ν (krijt − β0 − β1distj)

) ∣∣∣Jijt]
≥

E

[
(1− dijt)σν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Jijt] (64)

Proof: It follows from the definition of εijt as εijt = rijt − E[rijt|Jijt] and the assumptions in equations (7)
and (8) that E[εijt|Jijt, νijt] = 0. From equations (2), (6) and the assumption that distj ∈ Jijt it follows that
dijt is a function of the vector (Jijt, νijt); i.e. dijt = d(Jijt, νijt). Therefore, E[εijt|Jijt, dijt] = 0. Since

φ(y)

1− Φ(y)

is convex for any value of y and E[εijt|Jijt, dijt] = 0, by Jensen’s Inequality

E

[
(1− dijt)σν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj + kεijt)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj + kεijt)

) ∣∣∣Jijt]
≥

E

[
(1− dijt)σν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Jijt]
Equation (64) follows from the equality krijt = kE[rijt|Jijt] + kεijt. �

Corollary 4 Suppose Zijt ∈ Jijt then

E

[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)
+ (1− dijt)σν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Zijt] ≥ 0, (65)

E

[
dijt
(
krijt − β0 − β1distj

)∣∣∣Jijt] = E

[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)∣∣∣Zijt], (66)

and

E

[
(1− dijt)σν

φ
(
σ−1
ν (krijt − β0 − β1distj)

)
1− Φ

(
σ−1
ν (krijt − β0 − β1distj)

) ∣∣∣Zijt]
≥

E

[
(1− dijt)σν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
1− Φ

(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Zijt]. (67)

Proof: The results follow from Lemmas 6, 7 and 8 and the application of the Law of Iterated Expectations.
�
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Lemma 9 Suppose equations (2) and (6) hold. Then,

E[−(1− dijt)
(
kE[rijt|Jijt]− β0 − β1distj − νijt)|Jijt] ≥ 0. (68)

Proof: From equations (2) and (6),

dijt = 1{kE[rijt|Jijt]− β0 − β1distj − νijt ≥ 0}.

This implies

−(1− dijt)
(
kE[rijt|Jijt]− β0 − β1distj − νijt) ≥ 0.

This inequality holds for every firm i, country j, and year t. Therefore, it will also hold in expectation
conditional on Jijt. �

Lemma 10 Suppose equations (2), (6) and (8) hold. Then

E

[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)
+ dijtσν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Jijt] ≥ 0. (69)

Proof: From equation (68),

E
[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)∣∣Jijt]+E
[
(1− dijt)νijt

∣∣Jijt] ≥ 0. (70)

Since the assumption in equation (8) implies that E[νijt|Jijt] = 0, it follows that

E[dijtνijt + (1− dijt)νijt|Jijt] = 0,

and we can rewrite equation (70) as

E
[
dijt
(
kE[rijt|Jijt]− β0 − β1distj

)∣∣Jijt]−E[dijtνijt∣∣Jijt] ≥ 0. (71)

Applying the Law of Iterated Expectations, it follows that

E
[
dijtνijt

∣∣Jijt] = E
[
E[dijtνijt|dijt,Jijt]

∣∣Jijt] = E
[
dijtE[νijt|dijt,Jijt]

∣∣Jijt] =

P (dijt = 1|Jijt)× 1×E[νijt|dijt = 1,Jijt] + P (dijt = 0|Jijt)× 0×E[νijt|dijt = 0,Jijt] =

P (dijt = 1|Jijt)E[νijt|dijt = 1,Jijt] = E[dijt|Jijt]E[νijt|dijt = 1,Jijt] = E
[
dijtE[νijt|dijt = 1,Jijt]

∣∣Jijt],
and we can rewrite equation (71) as

E
[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)
− dijtE[νijt|dijt = 1,Jijt]

∣∣Jijt] ≥ 0. (72)

Using the definition of dijt in equation (6), it follows

E[νijt|dijt = 1,Jijt] = E[νijt|νijt ≤ kE[rijt|Jijt]− β0 − β1distj ,Jijt]

and, following equation (8), we can rewrite

E[νijt|dijt = 1,Jijt] = −σν
φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) .
Equation (69) follows by applying this equality to equation (72). �

Lemma 11 Suppose the assumptions in equation (7) and (8) hold. Then

E

[
− (1− dijt)

(
krijt − β0 − β1distj

)∣∣∣Jijt] = E

[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)∣∣∣Jijt] (73)
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Proof: From the definition of εijt as εijt = rijt −E[rijt|Jijt],

E

[
− (1− dijt)

(
krijt − β0 − β1distj

)∣∣∣Jijt] =

E

[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)∣∣∣Jijt]−E[k(1− dijt)εijt
∣∣∣Jijt]. (74)

From equations (7) and (8), E[εijt|Jijt, νijt] = 0. From equations (2), (6) and the assumption that distj ∈ Jijt
it follows that dijt is a function of the vector (Jijt, νijt); i.e. dijt = d(Jijt, νijt). Therefore, E[εijt|Jijt, dijt] = 0
and, applying the Law of Iterated Expectations,

E
[
k(1− dijt)εijt

∣∣Jijt] = E
[
k(1− dijt)E

[
εijt
∣∣Jijt, dijt]∣∣Jijt] = E

[
k(1− dijt)× 0

∣∣Jijt] = 0.

Applying this result to equation (74) yields equation (73).

Lemma 12 Suppose the assumptions in equation (7) and (8) hold. Then

E

[
dijtσν

φ
(
σ−1
ν (krijt − β0 − β1distj)

)
Φ
(
σ−1
ν (krijt − β0 − β1distj)

) ∣∣∣Jijt] ≥ E[dijtσν φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Jijt] (75)

Proof: It follows from the definition of εijt as εijt = rijt − E[rijt|Jijt] and the assumptions in equations (7)
and (8) that E[εijt|Jijt, νijt] = 0. From equations (2), (6) and the assumption that distj ∈ Jijt it follows that
dijt is a function of the vector (Jijt, νijt); i.e. dijt = d(Jijt, νijt). Therefore, E[εijt|Jijt, dijt] = 0. Since

φ(y)

Φ(y)

is convex for any value of y and E[εijt|Jijt, dijt] = 0, by Jensen’s Inequality

E

[
dijtσν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj + kεijt)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj + kεijt)

) ∣∣∣Jijt] ≥ E[dijtσν φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Jijt]
Equation (75) follows from the equality krijt = kE[rijt|Jijt] + kεijt. �

Corollary 5 Suppose Zijt ∈ Jijt then

E

[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)
+ dijtσν

φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Zijt] ≥ 0. (76)

E

[
− (1− dijt)

(
krijt − β0 − β1distj

)∣∣∣Zijt] = E

[
− (1− dijt)

(
kE[rijt|Jijt]− β0 − β1distj

)∣∣∣Zijt] (77)

and

E

[
dijtσν

φ
(
σ−1
ν (krijt − β0 − β1distj)

)
Φ
(
σ−1
ν (krijt − β0 − β1distj)

) ∣∣∣Zijt] ≥ E[dijtσν φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

)
Φ
(
σ−1
ν (kE[rijt|Jijt]− β0 − β1distj)

) ∣∣∣Zijt] (78)

Proof of Theorem 2 Combining equations (65), (66), and (67) we obtain the inequality defined by
equations (23) and (24a). Combining equations (76), (77), and (78) we obtain the inequality defined by
equations (23) and (24b). �

A.6 Proof of Theorem 3

Lemma 13 Suppose the assumptions in equations (7), (8), and (9) hold. Then

E

[
1− Φ(σ−1

ν (krijt − β0 − β1distj))

Φ(σ−1
ν (krijt − β0 − β1distj))

∣∣∣∣Jijt] ≥ E[1− Pijt
Pijt

∣∣∣∣Jijt]. (79)
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Proof: It follows from the definition of εijt as εijt = rijt − E[rijt|Jijt] and the assumptions in equations (7)
and (8) that E[εijt|Jijt, νijt] = 0. Since

1− Φ(y)

Φ(y)

is convex for any value of y and E[εijt|Jijt, dijt] = 0, by Jensen’s Inequality

E

[
1− Φ(σ−1

ν (kE[rijt|Jijt]− β0 − β1distj + kεijt))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj) + kεijt)

∣∣∣∣Jijt] ≥ E[1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Jijt].
Equation (79) follows from the equality krijt = kE[rijt|Jijt] + kεijt and the definition of Pijt in equation (9).
�

Lemma 14 Suppose the assumptions in equations (7), (8), and (9) hold. Then

E

[
Φ(σ−1

ν (krijt − β0 − β1distj))

1− Φ(σ−1
ν (krijt − β0 − β1distj))

∣∣∣∣Jijt] ≥ E[ Pijt
1− Pijt

∣∣∣∣Jijt]. (80)

Proof: It follows from the definition of εijt as εijt = rijt − E[rijt|Jijt] and the assumptions in equations (7)
and (8) that E[εijt|Jijt, νijt] = 0. Since

Φ(y)

1− Φ(y)

is convex for any value of y and E[εijt|Jijt, dijt] = 0, by Jensen’s Inequality

E

[
Φ(σ−1

ν (kE[rijt|Jijt]− β0 − β1distj + kεijt))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj) + kεijt)

∣∣∣∣Jijt] ≥ E[ Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

1− Φ(σ−1
ν (kE[rijt|Jijt]− β0 − β1distj))

∣∣∣∣Jijt].
Equation (79) follows from the equality krijt = kE[rijt|Jijt] + kεijt and the definition of Pijt in equation (9).
�

Lemma 15 Suppose Zijt ∈ Jijt, then

B2(Zijt; θ) ≥ E
[

1− Pijt
Pijt

∣∣∣∣Zijt], (81)

and

B1(Zijt; θ) ≥ E
[
Pijt

1− Pijt

∣∣∣∣Zijt]. (82)

Proof: It follows from lemmas 13 and 14, the definitions of B1(Zijt; θ) and B2(Zijt; θ) in equations (27) and
(28), and the Law of Iterated Expectations. �

Lemma 16 Suppose Y is a variable with support in (0, 1), then

E

[1− Y
Y

]
≥ 1−E[Y ]

E[Y ]
, (83)

and

E

[ Y

1− Y

]
≥ E[Y ]

1−E[Y ]
. (84)

Proof: We can rewrite the left hand side of equation (83) as

E

[1− Y
Y

]
= E

[ 1

Y
− 1
]

= E

[ 1

Y

]
− 1, (85)
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and the right hand side of equation (83) as

1−E[Y ]

E[Y ]
=

1

E[Y ]
− 1. (86)

As Y takes values in the interval (0, 1), Jensen’s inequality implies

E

[ 1

Y

]
≥ 1

E[Y ]
. (87)

Equations (85), (86), and (87) imply that equation (83) holds.

Define a random variable X = 1− Y and rewrite the left hand side of equation (84) as

E

[1−X
X

]
.

As the support of Y is (0, 1), the support of X is also (0, 1). Equations (85), (86), and (87) only depend on
the property that the support of Y is (0, 1). Therefore, from these equations, it must also be true that

E

[1−X
X

]
≥ 1−E[X]

E[X]
,

and, applying the inequality X = 1− Y , we can conclude that equation (84) holds. �

Corollary 6 Suppose Pijt is defined as in equation (9), then

E

[1− Pijt
Pijt

∣∣∣Zijt] ≥ 1−E[Pijt|Zijt]
E[Pijt|Zijt]

, (88)

and

E

[ Pijt
1− Pijt

∣∣∣Zijt] ≥ E[Pijt|Zijt]
1−E[Pijt|Zijt]

. (89)

Proof: Equation (9) implies that the support of Pijt is the interval (0, 1). Therefore, Lemma 16 implies that
equations (88) and (89) hold. �

Proof of Theorem 3 Combining equations (81) and (88),

B2(Zijt; θ) ≥ E
[

1− Pijt
Pijt

∣∣∣∣Zijt] ≥ 1−E[Pijt|Zijt]
E[Pijt|Zijt]

,

and, reordering terms, we obtain the inequality

1

1 +B2(Zijt; θ)
≤ E[Pijt|Zijt]. (90)

Combining equations (82) and (89),

B1(Zijt; θ) ≥ E
[
Pijt

1− Pijt

∣∣∣∣Zijt] ≥ E[Pijt|Zijt]
1−E[Pijt|Zijt]

and, reordering terms, we obtain the inequality

B1(Zijt; θ)

1 +B1(Zijt; θ)
≥ E[Pijt|Zijt]. (91)

Combining the inequalities in equations (90) and (91) we obtain equation (26). �
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A.7 Bounds on counterfactual choice probabilities

We may use equations (31), (32) and (33) to define bounds on expected export probabilities in the counterfac-
tual scenarios described in Sections 2.5 and 2.6.

Sections 2.5 describes a counterfactual scenario in which export entry costs become

fijt = β1
0 + β1

1distj + νijt = 0.6β0 + 0.6β1distj + νijt.

In this case, the export probability is defined in equation (15) as P1
ijt. Using expressions analogous to equations

(31), (32) and (33), we may define bounds the expectation of P1
ijt conditional on any particular value or set of

values of Zijt as follows

P1(Zijt) ≤ P1(Zijt) ≤ P
1
(Zijt), (92)

where

P1(Zijt) = min
γ∈Θall

1

1 +B1
2(Zijt; γ)

, (93)

P1
(Zijt) = max

γ∈Θall

B1
1(Zijt; γ)

1 +B1
1(Zijt; γ)

, (94)

with

B1
1(Zijt; θ) = E

[
Φ
(
σ−1
ν

(
krijt − 0.6β0 − 0.6β1distj

))
1− Φ

(
σ−1
ν

(
krijt − 0.6β0 − 0.6β1distj

)) ∣∣∣∣Zijt], (95)

B1
2(Zijt; θ) = E

[
1− Φ

(
σ−1
ν

(
krijt − 0.6β0 − 0.6β1distj

))
Φ
(
σ−1
ν

(
krijt − 0.6β0 − 0.6β1distj

)) ∣∣∣∣Zijt]. (96)

Section 2.6 describes a counterfactual scenario in which, due to a currency depreciation, the potential revenue
from exporting becomes

r2
ijt = rijt(1.2)η

In this case, the export probability is defined in equation (16) as P2
ijt. Using expressions analogous to equations

(31), (32) and (33), we may define bounds the expectation of P2
ijt conditional on any particular value or set of

values of Zijt as follows

P2(Zijt) ≤ P2(Zijt) ≤ P
2
(Zijt), (97)

where

P2(Zijt) = min
γ∈Θall

1

1 +B2
2(Zijt; γ)

, (98)

P2
(Zijt) = max

γ∈Θall

B2
1(Zijt; γ)

1 +B1
1(Zijt; γ)

, (99)

with

B2
1(Zijt; θ) = E

[
Φ
(
σ−1
ν

(
krijt(1.2)η − β0 − β1distj

))
1− Φ

(
σ−1
ν

(
krijt(1.2)η − β0 − β1distj

)) ∣∣∣∣Zijt], (100)

B2
2(Zijt; θ) = E

[
1− Φ

(
σ−1
ν

(
krijt(1.2)η − β0 − β1distj

))
Φ
(
σ−1
ν

(
krijt(1.2)η − β0 − β1distj

)) ∣∣∣∣Zijt]. (101)

Besides computing expected probabilities of export in actual and counterfactual scenarios, we may also define
bounds on the ratio of expected export probabilities in these different scenarios. Specifically, for the counter-
factual scenario described in Sections 2.5, we can compute bounds for the percentage growth of the expected
export probability for the subset of observations with a given value of Zijt due to a 40% reduction in the entry
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costs β0 and β1 using the expressions in Theorem 3:

min
γ∈Θall

1 +B1
2(Zijt; γ)

B1(Zijt;γ)

1+B1(Zijt;γ)

≤
P1
ijt(Zijt)

Pijt(Zijt)
≤ max
γ∈Θall

B1
1(Zijt;γ)

1+B1
1(Zijt;γ)

1 +B2(Zijt; γ)
, (102)

where B1(Zijt; γ) and B2(Zijt; γ) are defined in equations (27) and (28), respectively; and B1
1(Zijt; γ) and

B1
2(Zijt; γ) are defined in equations (95) and (96), respectively. For the counterfactual scenario described in

Section 2.6, we can construct bounds analogous to that in equation (102) using B2
1(Zijt; γ) and B2

2(Zijt; γ)
instead of B1

1(Zijt; γ) and B1
2(Zijt; γ).

A.8 Related econometric literature on discrete choice with endogenous re-
gressors

There are three additional alternative models that build on conditional independence assumptions to identify
the parameters of binary choice models with endogenous regressors: (1) the IV model of Chesher (2010) and
Chesher (2011); (2) the triangular system model that motivates the use of control function methods; and, (3)
the special regressor approach.

As Blundell and Powell (2003) show, even when the econometrician observes an excluded variable that
is independent of the error term in the random utility function, semi-parametric and non-parametric binary
response models are generally not point identified. Chesher (2010) shows that this result holds even if we
impose parametric restrictions both on the random utility function and on the marginal distribution of the
error term. Chesher (2010) provides the inequalities that sharply define the identified set under the assumption
that the econometrician observes a excluded variable that is independent of the error term (i.e. fully independent
instrument). While Chesher (2010) focuses on the case in which the endogenous variable is continuous, Chesher
(2011) performs an analogous exercise for the case in which it is discrete.19 Following our notation, Chesher
(2010) and Chesher (2011) assume that (ν + ε)|Z ∼ (ν + ε).

Our model is stricter than the one proposed in Chesher (2010) in that we formally define the error term
as the sum of two different unobserved components—a structural error, ν, and an expectational error, ε—and
we only allow for endogeneity that is due to expectational error. However, in another sense, our model can be
viewed as more flexible than that in Chesher (2010) because our identification strategy does not assume that
the aggregate error term, (ν + ε), is fully independent of the instrument vector, Z. We only need to impose
mean independence between this instrument and ε. This weaker independence assumption of our statistical
model matches the assumptions common to economic models of agents with rational expectations.20

The triangular system control function model is attractive because, under certain conditions, it point
identifies the parameters of interest. In particular, Blundell and Powell (2004) obtain point identification by
applying a control-function approach. This approach assumes that the endogenous variables are determined
by an equation X = m(Z,W ) such that there is a one-to-one mapping from the latent variables, W , to the
endogenous variables, X, at each value of the instrument vector, Z.21 The latent variable W is assumed to
verify: (ν + ε)|X,Z ∼ (ν + ε)|X,W ∼ (ν + ε)|W. In contrast, our model is a single-equation model: there is
no specification of any structural equation that would imply that the error term (ν + ε) is independent of the
endogenous regressor X, conditional on some latent variable, W .22

The special regressor approach assumes that the aggregate unobservable component, (ν+ ε), is distributed
independently of a continuously distributed explanatory variable (i.e. special regressor) and impose a particular
index restriction (Lewbel (2000)). This model is point identified only if the special regressor has large support.

19Other papers that explore this IV approach are Chesher and Smolinski (2010), Chesher et al. (2011),
Chesher and Rosen (2012).

20The only type of independence that the rational expectations assumption imposes on the definition of the
expectational error is mean independence between this error and any variable contained in the information set
of the agent.

21This restriction rules out cases in which there are discrete endogenous variables. In our case, we allow for
discrete endogenous variables as long as the measurement error verifies the restriction E[ε|X∗, Z] = 0.

22Other papers that explore the use of control function methods for the identification of binary choice models
in semi- and non-parametric settings are Blundell and Powell (2003), Chesher (2003), Chesher (2005), Chesher
(2007), Vytlacil and Yildiz (2007), Florens et al. (2008), Imbens and Newey (2009), and Shaikh and Vytlacil
(2011).
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In an application in which the only source of endogeneity is expectational error, this approach implies that one
covariate, the special regressor with large support, is measured without error.23 Our statistical model allows
all the regressors to contain expectational error.

23Other papers that explore the special regressor approach are Magnac and Maurin (2007) and Magnac and
Maurin (2008).
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